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Abstract

Theoretical and empirical studies on diffusion models have revealed their versatile applica-

bility across different fields, spanning from sociology and finance to biology and ecology.

The presence of a community structure within real-world networks has a substantial impact

on how diffusion processes unfold. Key nodes located both within and between these com-

munities play a crucial role in initiating diffusion, and community-aware centrality measures

effectively identify these nodes. While numerous diffusion models have been proposed in lit-

erature, very few studies investigate the relationship between the diffusive ability of key

nodes selected by community-aware centrality measures, the distinct dynamical conditions

of various models, and the diverse network topologies. By conducting a comparative evalua-

tion across four diffusion models, utilizing both synthetic and real-world networks, along with

employing two different community detection techniques, our study aims to gain deeper

insights into the effectiveness and applicability of the community-aware centrality measures.

Results suggest that the diffusive power of the selected nodes is affected by three main fac-

tors: the strength of the network’s community structure, the internal dynamics of each diffu-

sion model, and the budget availability. Specifically, within the category of simple contagion

models, such as SI, SIR, and IC, we observe similar diffusion patterns when the network’s

community structure strength and budget remain constant. In contrast, the LT model, which

falls under the category of complex contagion dynamics, exhibits divergent behavior under

the same conditions.

1 Introduction

Diffusion processes in networks refer to the spread or dissemination of various elements

within a networked system, such as information, behaviors, innovations, or diseases. These

processes are pivotal in understanding how ideas, influences, or entities traverse through inter-

connected nodes or individuals. Whether it’s the transmission of information on social media,

the propagation of a viral outbreak like the COVID-19 pandemic, or the rapid adoption of

new technologies, such as smartphones and social media platforms, studying diffusion in net-

works provides insights into the dynamics of interconnected systems and their societal impli-

cations. Researchers introduce models and frameworks to understand better and manage
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these diffusion processes to mitigate negative consequences, such as pandemics, and maximize

positive impacts, like efficient containment measures during health crises. Understanding dif-

fusion processes in networks is crucial for learning the dynamics of interconnected systems

and addressing various real-world challenges. Examining how information, behaviors, and

innovations spread within networks allows us to devise strategies to tackle misinformation,

epidemics, and optimized marketing campaigns. Moreover, this knowledge can empower us

to harness the positive aspects of diffusion, such as spreading awareness, promoting positive

messages, and fostering innovation. In essence, the study of diffusion processes in networks is

at the intersection of social science, technology, and public health, offering valuable insights

and opportunities for improving our interconnected world.

Diffusion begins from nodes located in specific areas of the network and spreads out with

time. How to select the seed nodes to maximize diffusion is a fundamental problem. Centrality

measures are one of the main approaches to do so. They rely on topological information from

the network to quantify node importance. Since the community structure impacts the diffu-

sion spreading dynamics [1–3], researchers showed that classical centrality measures may fall-

back in terms of selecting the most influential nodes [4–11]. Therefore, it is important to

incorporate community structure information to select seed nodes that maximize diffusion.

Unlike the classical centrality measures, which focus more on either the local or the global

influence of a node, the so-called community-aware centrality measures incorporate the

node’s local and global influence through its intra-community and inter-community links,

respectively [4–12]. The difference between these measures is how they combine these two

types of links. If more importance is given to the intra-community links (i.e., local influence),

the measure emphasizes hub-like nodes. Conversely, if importance is given to the inter-com-

munity links (i.e., global influence), the measure renders bridge-like nodes more important.

The diffusive ability of the community-aware centrality measures in selecting seed nodes is

assessed in a dynamic spreading scenario with specific conditions set on nodes and/or edges.

Most of the studies use the SIR model to assess the impact of the selection of seed nodes either

to maximize diffusion or to minimize it (this can also be called immunization) [4–10].

Despite being widely used, the SIR model does not convey all real-world spreading scenarios.

In particular, in the SIR model, a node can infect its neighborhood several times. In other

words, a node has many chances to infect or influence its neighbor(s) before it is removed

from the network. Nevertheless, sometimes the diffusion of a disease or a piece of information

can be spread by a node only once. That is to say, a node has a single chance to influence its

neighbor(s). For instance, consider people meeting in a manifestation. They will meet in this

manifestation once, and they may not meet again afterward. The piece of information from

one person to another will be transmitted given this one-time chance. Another example is

that a person may change his/her opinion towards a cause only if a sufficient number his/her

neighbors adopts this opinion. The presence of various conditions that can occur in nodes or

edges in the real world necessitates the creation and evaluation of multiple diffusion models.

This allows us to formally pose the main research question of this article: how does the dif-

fusion models’ output depend on the seeds and the network? The seeds are selected based on

the community-aware centrality measures. The community-aware centrality measures rely on

the network’s structure. The model’s output (i.e., the diffusion spread) depends on the net-

work’s structure and the seed nodes. Thus, we investigate the interplay between the spread of

various diffusion models, initiated through the seed nodes selected by the community-aware

centrality measures, and the network’s structure. This problem is relevant to many disciplines,

from biology and epidemics to sociology and economics. In addition to the diffusion models,

there are insufficient studies using a multiple-spreading phenomenon under a spreading sce-

nario rather than in immunization. Another issue is that the community structure changes
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using one community detection algorithm over the other, which may impact the diffusion

dynamics. This also poses a challenge on how the spread will evolve, given that the same seed

nodes initiate the diffusion. Finally, we do not have a clear idea of how the community-aware

centrality measures compare in controlled synthetic networks and diverse real-world net-

works. Indeed, previous works mainly focused on a small set of synthetic and real-world net-

works. This does not enable us to rigorously answer when community-aware centrality

measures outperform and what their bottlenecks are.

All of the stated challenges are tackled in this article. To conduct the study, we systemati-

cally use eight community-aware centrality measures on a set of four conceptually different

diffusion models using a set of synthetic and real-world networks from diverse domains under

the multiple-spreader scheme. Therefore, three main parameters are under investigation: the

diffusion model and its underlying dynamics, the network and its topological characteristics,

and the community-aware centrality measures and their inner workings. The employed diffu-

sion models are the Susceptible-Infected (SI) model, Susceptible-Infected-Recovered (SIR)

model, the Linear Threshold (LT) model, and the Independent Cascade (IC) model. Synthetic

networks are generated using the LFR algorithm [13] where several parameters can be varied,

including the community structure strength, the community size distribution, and the degree

distribution. In real-world networks, Infomap and Louvain community detection algorithms

are used to uncover the underlying community structure, and their impact is also studied. The

community-aware centrality measures and their time complexities as well as the networks are

discussed in more detail in S1 Text.

In this article, we contribute to the literature by:

1. Enhancing comprehension of the spread of node influence across diverse diffusion models

and network structures.

2. Highlighting how the network structure and budget availability can impact the selection of

seed nodes based on community-aware centrality measures.

3. Providing a solid outset for practitioners to select seed nodes that maximize diffusion based

on the network structure, budget availability, and the diffusion model that applies in their

research case.

2 State of the art

Influential nodes are critical in boosting or curbing spreading phenomena in complex net-

works. A multitude of classical centrality measures has been proposed to quantify node influ-

ence. These measures prove their merit in many scenarios, like assessing the infectious

capacities of nodes [14] to quantifying financial distress [15] and applying viral marketing

[16]. Researchers have shown that classical centrality measures may undermine the influence

of nodes in networks with community structure [4–11]. Indeed, many real-world networks are

characterized by a community structure that drastically impacts spreading dynamics [1–3].

Thus, in networks with a community structure, nodes that may not be considered influential

by a classical centrality measure (i.e., agnostic about the community structure) may be of ulti-

mate influence when one considers the mesoscopic organization of the network.

The exploitation of communities to identify influential nodes using centrality dates back to

2005 when Guimerà and Amaral [4] proposed Participation Coefficient, which uncovered key

metabolites across species in metabolic networks. Zhao et al. [5] proposed Community-based

Centrality, capable of identifying influential nodes in which the classical degree, betweenness,

and eigenvector centralities could not identify in the Susceptible-Infected-Recovered (SIR)
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model with a single-spreader scheme. Unlike Community-based Centrality, Comm centrality

proposed by Gupta et al. [6] adapts to the network’s strength of community structure, succeed-

ing in identifying hubs and bridges, with the latter being prioritized in an immunization sce-

nario using SIR. Luo et al. [7] merged the network’s community structure and hierarchy to

develop K-shell with Community, proving its outperformance against classical centrality mea-

sures in the SIR model with a single-spreader scheme. Tulu et al. [8] showed that using the

entropy of a node’s intra-community and inter-community links, nodes disseminating infor-

mation quickly can be better identified in the SIR model. Ghalmane et al. [9] proposed Com-

munity Hub-Bridge, which showed its effectiveness in hindering an epidemic by immunizing

influential nodes under the SIR dynamics in networks with a strong community structure.

Magelinski et al. [10] exploited the so-called modularity, a quality measure to assess the com-

munity structure of a network, to identify hubs and bridges. The authors showed that their

community-aware centrality could dismantle a very large infrastructural network eight times

more effectively than other centrality measures by taking a limiting case of the SIR model.

Recently, Blöcker et al. [11] showed the merit of an information-theoretic community-aware

centrality measure based on the map equation in the SIR model using a single-spreader

scheme and the Linear Threshold (LT) model using a multiple-spreader scheme.

Despite the outperformance of the community-aware centrality measures compared to

classical ones in identifying influential nodes, several limitations need to be addressed. First,

most of the community-aware centrality measures are majorly assessed under the SIR dynam-

ics, either to maximize diffusion [5, 7, 8, 11] or minimize it [6, 7, 9, 10] by removing the most

central nodes. The latter case is also referred to as “immunization.” Nevertheless, the SIR

model does not characterize all situations. Despite researchers’ aim to develop generalized dif-

fusion models, many cases entail adding specific conditions that are not applicable in all real-

world situations. Therefore, many diffusive models exist to characterize better cases occurring

in the real world. Only one community-aware centrality measure, the Map Equation Central-

ity [11], is assessed using the SIR and LT dynamics. Second, most of the studies maximizing

SIR diffusion use the single-spreader scheme. That being said, Participation Coefficient [4] is

the only community-aware centrality measure not assessed with respect to a dynamic model

since its original aim was to identify key proteins and construct cartography of metabolic net-

works rather than analyze the measure’s diffusive power. Third, many studies use a single

community detection algorithm if the network’s community structure is unknown. There-

fore, it is not well understood how the mesoscopic arrangement of communities affects the

dynamics within the same network. Finally, every community-aware centrality measure is

assessed on a small sample of real-world and synthetic networks. Table 1 summarizes the

works concerning the development and comparison of community-aware centrality mea-

sures. The limitations raise several concerns regarding the consistency of the community-

aware centrality measures, and this article aims to address these questions. Fig 1 illustrates the

methodological process followed in this article. The code and the datasets are accessible via

GitHub: https://github.com/StephanyRajeh/DiffusionDynamicsAndCommAwareCentrality.

3 Diffusion models

Diffusion in complex networks is an important interdisciplinary research area representing

many real-world situations. Researchers from various domains were attracted to developing

models for a more realistic characterization of dynamics on networks. The goal is to describe

the current dynamic situation better to apply well-informed decisions and predict future

trends. For instance, models were proposed to combat malware spreading across computer

networks [17], to optimize online marketing campaigns [18], and to forecast COVID-19 at
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different territorial levels [19]. Thus, it is clear that one model characterizing all real-world sit-

uations is insufficient.

Due to the ubiquity of dynamic interactions across networks in many domains, there is a

rich taxonomy for diffusion models. Some researchers refer to them as simple and complex

contagions [20–22]. The dynamics of a simple contagion designate that a single contact with

an active/infected node is enough for successful transmission. With a complex contagion, a

node requires an aggregation of connections with its neighborhood for successful

Table 1. A summary of the studies of community-aware centrality measures. SIR means Susceptible-Infected-Recovered model and LT refers to Linear Threshold

model. The character ‘-’ refers to “not applicable”.& indicates that the goal is to minimize diffusion and% indicates that the goal is to maximize diffusion.

Community-aware Diffusion model Node selection Real-world Synthetic Number of community

centrality measures & goal method networks networks detection algorithms

Participation Coefficient [4] - - 12 - 1

Community-based Centrality [5] SIR% Single 6 - 5

Comm Centrality [6] SIR& Multiple 4 3 1

K-shell with Community [7] SIR%& Single & Multiple 4 - 1

Community-based Mediator [8] SIR% Single & Multiple 5 2 1

Community Hub-Bridge [9] SIR& Multiple 6 5 3

Modularity Vitality [10] SIR& Multiple 2 3 1

Map Equation Centrality [11] SIR% & LT% Single & Multiple 12 1 2

https://doi.org/10.1371/journal.pone.0306561.t001

Fig 1. The main steps in our study. First, we extract the community structure if it is not known, then we compute the community-aware centrality

measures and sort the nodes from most influential to least. Afterwards, we take a top fraction of nodes denoted as fo to be infected/activated. The size of

fo varies according to a predefined budget, which we set from 1% of the network’s size to 50% in our study. Then, these selected nodes will initiate the

dynamics under the four conceptually different models: the SI, SIR, IC and LT models. When the models reach their stable state, we compare their

output. Every model has a different evaluation measure to evaluate the output. In the SI model, the average number of iterations needed to infect 50% of

the network is computed: the lower the number of iterations, the more effective the centrality measure. In the SIR and IC models, the relative outbreak

and activation size denoted as ΔR and ΔA, respectively are computed. This value quantifies the difference between the number of nodes recovered or

activated based on a given community-aware centrality measure and a reference measure which is the classical degree centrality in our case: the higher

ΔR and ΔA are, the better the performance of the community-aware centrality measure. Finally, in the LT model, the evaluation measure is the total

number of activated nodes normalized by the size of the network: the higher Ar is, the better.

https://doi.org/10.1371/journal.pone.0306561.g001
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communication to take place. Other researchers divide diffusion models into biological/epi-

demic models and social/information diffusion models [23–26].

Epidemic models characterize the spread of a virus between individuals, with various

parameters in place, such as the infection rate and the recovery rate. In information diffusion,

the goal is to simulate the influence of one person over others through passing knowledge,

ideas, or opinions toward products or controversial topics. Diffusion models also can be

divided into explanatory and predictive models [27–29]. In explanatory models, given an

ordered sequence of activated nodes, the goal is to backtrack the evolution of the propagation.

In predictive models, the aim is to infer the development of the diffusion process from a set of

activated nodes. One can further divide predictive models into graph-based and non-graph-

based [27].

Regardless of the taxonomy, popular models mainly differ in four main aspects. The first

is the number of states a node can acquire. For instance, in the Susceptible-Infected-Recov-

ered (SIR) model [30], a node can be in one of three states. In contrast, in the Susceptible-

Infected (SI) model [30], the node can be either susceptible or infected. The second is the fre-

quency of an activated node capable of influencing other nodes. In the Independent Cas-

cades (IC) model [31], an activated node has a single chance of affecting its neighboring

nodes. On the contrary, in the Linear Threshold (LT) model [32], more than one possibility

of activation is possible. The third main difference relates to the conditions set on nodes

and/or edges. For example, in the SIR model, a constant infection rate is set, while in the IC

model, the probability of influencing neighboring nodes can vary. Finally, the fourth main

difference is whether the model follows the simple contagion or complex contagion dynam-

ics: the dynamics of a simple contagion indicate that a single contact with an active/infected

node is enough for successful transmission. While with a complex contagion, a node requires

an aggregation of connections with its neighborhood for successful transmission to take

place. Note that one can use the terms active/infected and inactive/susceptible

interchangeably.

We are interested in using various models to study the interplay of the diffusion process

and the networks given a set of activated nodes selected based on the community-aware cen-

trality measures. In this study, we consider four diffusion models:

• The Susceptible-Infected (SI) model

• The Susceptible-Infected-Recovered (SIR) model

• The Linear Threshold (LT) model

• The Independent Cascade (IC) model

We choose these models for three main reasons: their popularity in the scientific commu-

nity, their capacity to model realistically diverse diffusion phenomena, and their genericity.

The SI and the SIR models originate from epidemiological modeling, while the LT and IC

models originate from information diffusion modeling. Additionally, the SI, SIR, and IC

models are simple contagion processes where an active node has a single chance of activating

another node. In this case, an inactive node does not rely on collective influence to change its

state. A single event from an influential activated node is enough for it to become active. In

contrast, in the LT model, the success of a transmission depends on the aggregation of the

activations of a node’s neighborhood. Finally, all these models are predictive since they all

predict the diffusion spread in a network given a set of activated nodes. Fig 2 illustrates the

main characteristics of the four models. In the following sections, we discuss each model in

more detail.
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We note that in this study we are not addressing the problem of influence maximization

(i.e., finding the smallest set of nodes that ignites the maximal activation size of nodes).

Instead, we are more interested in the interplay between the dynamic models, the network

structure, and seed nodes selected using centrality measures with different budget availabili-

ties. The influence maximization problem is NP-hard. Nevertheless, several algorithms have

been proposed to approximate this problem [33, 34]. In addition to the research conducted on

the differences between simple and complex contagions, network dynamics can also be studied

from a resiliency point of view. In that matter, Gao, Barzel, and Barabási [35] explored the

dynamics of resilience in complex networks and found a universal resilience pattern across

networks, regardless of the network’s structure, that is derived based on the effective state of

each node which is in turn affected by the state of its neighbors. Their findings help predict

critical points in any network and thus set proactive measures to deter possible perturbations

and thus render a resilient system. For more information about influence maximization, one

can refer to [36, 37].

Fig 2. Comparing the diffusion models under study. λ is the infection rate, ψ is the recovery rate, mv is the total number of active neighbors node v
possesses, ξv is node the threshold of node v, Pu,v is the likelihood of node u activating node v, and ξu,v is the threshold of edge (u, v).

https://doi.org/10.1371/journal.pone.0306561.g002
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4 Diffusion dynamics in synthetic networks

This section investigates the interplay between the network’s community structure, the various

diffusion mechanisms based on the four models under study (i.e., SI, SIR, IC, and LT), and

community-aware centrality measures on a set of synthetic networks generated by the Lanci-

chinetti, Fortunato, and Radicchi (LFR) algorithm [13]. This algorithm allows the tuning of

various parameters of the community structure. We investigate the influence of the commu-

nity structure strength controlled by the mixing parameter (μ), the degree distribution power-

law exponent (γ), and the community size distribution power-law exponent (θ). These param-

eters were chosen based on their significant impact on network structure, the community

structure strength μ, which has been extensively studied [13, 38, 39]. More details about the

synthetic networks and the parameters set to generate them are provided in S1 Text. We note

that the networks studied in this article are considered simple, undirected, and unweighted.

Influence of the community structure strength

The mixing parameter (μ) controls the community structure strength. Low values yield net-

works with a strong community structure since few inter-community links exist. As μ
increases, the network’s community structure strength loosens, resulting in the disappearance

of dense and well-defined regions. To study the effect of the community structure strength on

the various diffusion dynamics, we generate LFR networks with strong (μ = 0.05), medium (μ
= 0.20), and weak (μ = 0.70) community structures. Given the ranking of a community-aware

centrality measure, a fraction fo of the top-ranked nodes in the network is initially infected/

activated in each of the SI, SIR, IC, and LT models. The results are reported in Fig 3. The evalu-

ation measure in the SI model is the average number of iterations needed for a given fo to infect

50% of the network. The lower the number of iterations, the more effective the centrality mea-

sure. In the SIR and IC models, the relative outbreak/activation size (i.e., ΔR/ΔA) is computed.

This value quantifies the difference between the number of nodes recovered/activated at the

end of the dynamical process when fo is based on a given community-aware centrality measure

and a baseline measure which is the degree centrality. Recall that DR ¼ Rc � Rr
Rr

(see S1 Text for

more details). The higher it is, the better the performance of the community-aware centrality

measure. Finally, in the LT model, the evaluation measure is the total number of activated

nodes normalized by the size of the network (i.e., the activation rate Ar).
Two main phenomena dominate as the community structure strength (μ) varies from

strong (μ = 0.05) to weak (μ = 0.70). First, the stronger the community structure, the more pro-

nounced the difference is in the performance of the community-aware centrality measures. As

the community structure strength decreases (i.e., weakens), the performance of the commu-

nity-aware centrality measures becomes more comparable, and differences are less visible.

Community-aware centrality measures are well-adapted to networks with a well-defined com-

munity structure. With this structure, each measure can exploit various community informa-

tion to identify influential hubs and bridges that contribute to the network’s community

structure. If the community structure is loosely defined, it becomes more difficult for the com-

munity-aware centrality measures to pinpoint these influential nodes. Indeed, in a weak com-

munity structure, hubs and bridges become less prominent, and the average degree of the

nodes becomes more analogous.

The second phenomenon is related to the divergence in the scales (i.e., the magnitude of the

evaluation measures) while the dynamical processes take place. In the SI model (Fig 3A), with

a strong community structure, the epidemic diffusion needs more iterations to reach 50% of

the network. As communities share a few inter-community links in a network with a strong

community structure, the infection tends to stay more localized in the communities. With a
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decrease in the community structure strength, the proportion of inter-community links

increases. Therefore, the infection can spread more quickly to the remaining communities.

Thus, fewer iterations are needed to infect half of the network. In the SIR and IC models

(Fig 3B and 3C), it is clear that when the network has a strong community structure, a set of

community-aware centrality measures outperform degree centrality by a large difference.

However, as the community structure strength weakens, the community-aware centrality mea-

sures become more comparable to the performance of the degree centrality.

Inspecting the community-aware centrality measures in more detail, most of these mea-

sures are a variant of degree centrality exploiting the inter-community and intra-community

links in various ways. The smaller the difference between these two types of links—usually pre-

vailing in a network with a loose community structure—the higher the resemblance of the

community-aware centrality measures to degree centrality. Therefore, in a network with a

weak community structure, the outperformance of the community-aware centrality measures

Fig 3. Behavior of the community-aware centrality measures under various dynamic models in synthetic networks while varying the mixing

parameter (μ). The first, second, third, and fourth rows indicate the results of the (A) SI model, (B) SIR model, (C) IC model, and (D) LT model.

https://doi.org/10.1371/journal.pone.0306561.g003
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is insignificant compared to degree centrality. The latter is advised for usage as it does not

need community-level information. Nevertheless, with a strong community structure strength,

community-aware centrality measures can extract information that the community-agnostic

degree centrality cannot.

In LT model (Fig 3D), when the network has a strong community structure strength,

achieving full activation of nodes is unattainable, even with an initial activation fraction (fo) set

at 50%. Nevertheless, when the community structure weakens, lower values of fo can result in

complete activation, particularly when μ is set at 0.7. This suggests that in networks with

reduced community cohesion, the diffusion of activations becomes more and easily achievable.

An important finding can be extracted independently of the community structure strength

(μ). It concerns the similarities of the various dynamic models. By visually inspecting Fig 3,

one can note that generally, at any given fo, the top 2 outperforming centrality measures are

comparable across the SI, SIR, and IC models, excluding the LT model. For instance, at fo =

0.05 and μ = 0.05, the top 2 outperforming centrality measures are Comm Centrality (αComm)

and Participation Coefficient (αPC) in the SI, SIR, and IC models. In contrast, Map Equation

Centrality (αMapEq) and Community-based Mediator (αCBM) are the top 2 most performing in

the LT model at fo = 0.05 and μ = 0.05. This behavior is logical as the SI, SIR, and IC are a vari-

ant of one another. The SIR is the SI with an additional “recovered” state. The IC sets thresh-

olds on edges, and nodes have one chance to infect/activate their neighbors, while in the SIR

model, a node has more than one chance. Even though differences exist, they are nominal.

Indeed, their dynamics follow the simple contagion dynamics where nodes getting activated/

infected are independent of their surroundings. This is not true for the LT model, where a

node’s activation depends on its neighborhood’s aggregate activations. Subsequently, activa-

tions are harder to diffuse across the network, especially if the network has a strong commu-

nity structure strength [40, 41].

These results suggest that the community-aware centrality measures are more profitable in

networks with a strong community structure strength. They also suggest that one should be

prudent in using the measures even with a strong community structure strength, as the outper-

formance depends on the model. Some measures are well-suited to the SI, SIR, and IC models,

while others are more suited to the LT dynamics.

Influence of the community size distribution exponent

The community size distribution exponent (θ) is responsible for the frequency and the size of

the generated communities. We fix the community structure strength at μ = 0.05 and generate

three networks with three different community size distribution exponents. The first, having θ
= 2, indicates that large communities make up most of the network, with the existence of few

small communities, resulting in a large variance in the community sizes. The second, having θ
= 2.7, yields less variance in the community sizes with a larger number of communities.

Finally, the third, having θ = 3, a high number of communities exist with equivalent sizes.

Given the ranking of a community-aware centrality measure, a fraction fo of the top-ranked

nodes in the network is initially infected/activated in each of the SI, SIR, IC, and LT models.

The results are reported in Fig 4.

In case the dynamics follow the SI, SIR, or IC, illustrated in the first three rows of Fig 4, it

can be noticed that the general trends of the community-aware centrality measures persist

whether the network is generated with θ = 2, θ = 2.7, and θ = 3. The main difference is in the

magnitude of the final output of each of the models. However, with the LT model, illustrated

in the last row of Fig 4, the behavior of the community-aware centrality measures changes

with every θ under investigation.
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Particularly, in the SI model, in the network with a larger variance in the community size

distribution (i.e., at θ = 2), it takes less time to infect 50% of the network compared to networks

with fewer communities of equivalent sizes. For instance, when θ = 2, at fo = 0.2, the average

number of iterations for Comm Centrality (αComm), the best performing centrality, takes 20

iterations while with θ = 2.7, it takes 30 iterations and with θ = 3 it takes 32 iterations. The mag-

nitude of the relative outbreak size (ΔR) in the SIR model shows that the outperformance of

Comm Centrality (αComm), Modularity Vitality targeting hubs (aþMV), and Participation Coeffi-

cient (αPC) is more pronounced in the networks with θ = 2.7 and θ = 3. For instance, let’s take

fo = 0.10, ΔR of Comm Centrality amounts to 8.5% in the network with θ = 2, while in the net-

works with θ = 2.7 and θ = 3, ΔR amounts to 15%. Under the IC dynamics, the highest magni-

tude of the relative activation size (ΔA) is reached when θ = 2 (ΔA = 13%). In contrast, when

θ = 2.7 and θ = 3, the maximum ΔA reached amounts to 25% and 28.5%, respectively.

Despite the similarities in the general trends of the community-aware centrality measures,

one subtle difference needs to be noted concerning Participation Coefficient. In the three

Fig 4. Behavior of the community-aware centrality measures under various dynamic models in synthetic networks while varying the community

size distribution exponent (θ). The first, second, third, and fourth rows indicate the results of the (A) SI model, (B) SIR model, (C) IC model, and (D)

LT model.

https://doi.org/10.1371/journal.pone.0306561.g004
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models, Participation Coefficient performs less when θ = 2. As stated earlier, θ = 2 indicates

that the network is characterized by a few small communities and many large communities,

which comprise most of the network. Participation Coefficient’s effectiveness depends on the

number of communities within the network. If there are many communities, it has more room

to distinguish the difference in influence between nodes. On the other hand, having fewer

communities makes it less effective as many nodes will have similar centrality, making it diffi-

cult to distinguish their influence characteristics.

In the LT model, the impact of adjusting θ is more pronounced on the performance of the

top-performing community-aware centrality measures in terms of behavior rather than mag-

nitude. The contrast becomes more noticeable when the budget range goes from low to

medium. When the budget is high, in all of the studied θ, the strategy is to target hubs and

bridges together using Modularity Vitality targeting hubs and bridges (|αMV|). We now discuss

when the budget spans from low to medium. When the network has a significant variance in

the community size distribution (θ = 2), hub-like nodes are preferred up to a small value for

the budget availability, then bridge-like nodes are preferred. In contrast, with a smaller vari-

ance in the community size distribution (θ = 2.7 and θ = 3), hub-like nodes are always pre-

ferred. More specifically, when the value of θ is equal to 2, the hub-like nodes that produce the

highest outbreak until fo reaches 0.05 are selected by Map Equation Centrality (αMapEq) and

Community-based Centrality (αCBC). From fo = 0.06 to fo = 0.34, bridge-like nodes selected by

Community-based Mediator (αCBM) and then by Comm Centrality (αComm) are the nodes that

generate the highest activation rate. If θ is equal to 2 or 2.7, the hub-like nodes preferred at the

small budget are chosen by Map Equation Centrality (αMapEq), and then Modularity Vitality

targeting hubs (aþMV) takes over for a broader range of budget availabilities.

To sum up, the results of the SI, SIR, and IC models suggest that changing the community

size distribution exponent has a greater community-aware centrality measures’ magnitude in

the model’s output rather than their behavior. In networks with a large variance in community

sizes, the outbreak size in the SIR model and the activation size in the IC model are not as pro-

nounced as in networks with a smaller variance, implying that the outbreak can more easily

spread to many communities with equivalent sizes. However, many communities may remain

unaffected if the infection starts in big communities and remains within them. In the SI

model, when there is a large variance in community sizes, it takes less time to infect 50% of the

network since it consists of only a few big communities. Suppose many nodes are in the same

community, making up almost 50% of the network. In that case, it is easy to infect/activate

that community because the nodes in the community are more likely to be directly or indi-

rectly connected. In the LT model, the community size distribution has a greater effect on the

behavior of community-aware centrality measures than their magnitude. When there is a large

variance in community size distribution, bridge-like nodes play a crucial role in the medium

budget range, as the selected bridges are likely to be located in large communities, resulting in

a higher outbreak. Conversely, when there are many communities of similar sizes, it is more

beneficial to target hub-like nodes since the influence of bridge nodes may stop at the border

of a community with high density. These findings are supported by studies on contagions and

networks [40, 41].

Influence of the degree distribution exponent

The degree distribution exponent (γ) characterizes the number of links nodes have in a net-

work. The LFR algorithm generates networks with a power-law degree distribution fitting the

degree distribution of many real-world networks [42, 43]. Many real-world networks are dis-

tinguished by γ falling between 2 and 3 [44, 45]. To investigate three representative cases, we
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fix the community structure strength at μ = 0.05 and generate three networks with γ = [2, 2.7,

3]. While preserving the community structure, the network portrays a hub-and-spoke struc-

ture when γ = 2 [46]. On the other extreme, the nodes inside the communities have more com-

parable degrees, resembling a random-like network when γ = 3. At γ = 2.7, the network

resembles a typical scale-free network. Given the ranking of a community-aware centrality

measure, a fraction fo of the top-ranked nodes in the network is initially infected/activated in

each of the SI, SIR, IC, and LT models. The results are reported in Fig 5.

Similar to the variation of the community size distribution exponent (θ), the general trend

persists when varying the degree distribution exponent (γ) in the SI, SIR, and IC models.

Indeed, the difference is attributed to the magnitude of the SI, SIR, and IC models’ output,

illustrated in the first three rows of Fig 5. While with the LT model, illustrated in the last row

of Fig 5, the behavior of the community-aware centrality measures is what changes rather than

the magnitude.

To begin with the SI model, the time it takes to infect 50% of the network decreases as the

initial fraction of infected nodes (fo) increases, as γ increases. Indeed, the network structure

Fig 5. Behavior of the community-aware centrality measures under various dynamic models in synthetic networks while varying the degree

distribution exponent (γ). The first, second, third, and fourth rows indicate the results of the (A) SI model, (B) SIR model, (C) IC model, and (D) LT

model.

https://doi.org/10.1371/journal.pone.0306561.g005
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impacts the number of iterations it takes to infect 50% of the network. The random-like struc-

ture inside the communities, as found in γ = 3 networks, results in a faster spread compared to

the hub-and-spoke-like structure, as found in γ = 2 networks and to a lesser extent when γ =

2.7. For example, when fo = 0.1, the best performing centrality in the SI model, Comm Central-

ity (αComm), takes an average of 39 iterations to infect 50% of the network in a γ = 2 network,

36 iterations in a γ = 2.7 network, and 31.5 iterations in a γ = 3 network. In the SIR and IC

models, the output of all the measures performs more in the networks with θ = 2 and θ = 2.7

compared to γ = 3. Let’s take fo = 0.10 following the SIR model, ΔR of Comm Centrality

amounts to 17% in the network with γ = 2, to 16% in the network with γ = 2.7, and to 13% in

the network with γ = 3. Under the IC dynamics, the maximum relative activation size (ΔA)

when it equals 2 is 26.5%, while at γ = 2.7 and γ = 3, the ΔA reached is 25% and 19.5%,

respectively.

Although there are similarities in the overall patterns of the community-aware centrality

measures in the SI, SIR, and LT models, the Participation Coefficient is influenced by changes

in the degree distribution exponent, similar to the impact of changes in the community size

distribution exponent. Specifically, the Participation Coefficient performs better when the net-

work is created with γ = 2 and γ = 2.7. This suggests that the Participation Coefficient benefits

from having differences in node degrees, which allows it to distinguish between nodes and

identify the most influential ones.

The results of the LT model show that the main difference between different values of γ is

observed when the budget availability is medium. When the budget is high (i.e., fo� 0.40), tar-

geting hub-like and bridge-like nodes using Modularity Vitality targeting hubs and bridges

(|αMV|) is always the most effective strategy, regardless of γ. Similarly, when the budget is low

(i.e., fo� 0.05), it is always better to target hub-like nodes selected by Map Equation Centrality

(αMapEq). However, when the budget is medium, networks with γ = 2 and γ = 2.7 tend to bene-

fit more from targeting hub-like nodes using Modularity Vitality targeting hubs (aþMV). On the

other hand, in networks with γ = 3, where the communities are more random, bridge-like

nodes become more influential. Community-based Mediator (αCBM) selects nodes that are

well-connected between different communities in the network for a higher activation rate in

this case.

In brief, results show that community-aware centrality measures exhibit consistent behav-

ior across the SI, SIR, and IC models as the degree distribution exponent changes. However,

the models’ output based on these measures varies in magnitude. When the degrees of nodes

in communities are similar, the SI model takes less time to infect more of the network. But in

the SIR and IC models, community-aware centrality measures are comparable to degree cen-

trality as they are evaluated using the relative outbreak and activation sizes. This is because the

measures have less power to differentiate between hub-like and bridge-like nodes when node

degrees are similar. In contrast, the LT model’s community-aware centrality measures exhib-

ited differences in behavior rather than magnitude, particularly at medium budget availabili-

ties. Results indicate that targeting bridge-like nodes is better when node degrees are

comparable in their communities. This is because similar degrees may imply similar influence,

making differentiation difficult. Therefore, selecting bridge-like nodes has a better chance of

igniting a more significant impact in the network.

5 Diffusion dynamics in real-world networks

In this section, we investigate the interplay between the diffusion dynamics of the SI, SIR, IC,

and LT models and the community-aware centrality measures on forty real-world networks.

Unlike synthetic networks, the topological characteristics of real-world networks cannot be
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controlled. Indeed, real-world networks are characterized by diverse structures that affect the

diffusion dynamics differently. Moreover, these networks pertain to various domains (i.e.,

infrastructural, social, acting, biological, and collaborative). Thus, nodes and edges have spe-

cific roles in maintaining the normal functioning of the network. Since the community struc-

ture of real-world networks is unknown a priori, we uncover their communities using the

Infomap [47] community detection algorithm. At a later stage, we investigate the consistency

of the results using the Louvain [48] community detection algorithm.

Similar to the methodology adopted with synthetic networks, a fraction fo of the top-ranked

nodes in each network is initially infected/activated, given the ranking of a community-aware

centrality measure in each of the SI, SIR, IC, and LT models. For brevity, the results of four

real-world networks are reported in Fig 6. These networks are representative cases of the

dynamics seen across the networks under study. Indeed, the extensive analysis across the mod-

els shows two network categories in every diffusion model investigated. These two categories,

illustrating a different behavior in terms of the spreading dynamics, can be divided based on

the network’s community structure strength. The remaining networks are provided in S1

Text.

The first category comprises networks with medium to weak community structure

strengths, such as the networks Hamsterster (μ = 0.298) and Kegg Metabolic (μ = 0.466). In

this category, a shared trend illustrates that up to a certain fraction of initially infected/acti-

vated nodes (fo), bridge-like nodes using Comm Centrality (αComm) outperform the remaining

measures. After passing fo, which is network-dependent, hub-like nodes using Modularity

Fig 6. Behavior of the community-aware centrality measures under various dynamic models in real-world networks with varying community

structure strengths. The first, second, third, and fourth rows indicate the results of the (A) SI model, (B) SIR model, (C) IC model, and (D) LT model.

https://doi.org/10.1371/journal.pone.0306561.g006

PLOS ONE On the role of diffusion dynamics on community-aware centrality measures

PLOS ONE | https://doi.org/10.1371/journal.pone.0306561 July 18, 2024 15 / 31

https://doi.org/10.1371/journal.pone.0306561.g006
https://doi.org/10.1371/journal.pone.0306561


Vitality targeting hubs (aþMV) outperform other measures in terms of spreading capability in

each of the SI, SIR, and IC models. In between, Community Hub-Bridge (αCHB) provides good

results in a medium range of fo only in the SIR and IC models. Results in the LT model diverge

from the remaining models. With the LT dynamics, hub-like nodes using Map Equation Cen-

trality (αMapEq) outperform the remaining measures up to a certain fo. Then, it either persists

in its outperformance with other measures or Comm Centrality (αComm), which has a prefer-

ence for bridge-like nodes, outperforms the remaining measures (as seen with Hamsterster).

The second category comprises networks with a strong community structure strength, such

as Ego Facebook (μ = 0.077) and Facebook Politician Pages (μ = 0.111). Within this category,

under the SI, SIR, and IC dynamics, bridge-like nodes always yield the highest performance.

The distinction lies in which community-aware centrality measure yields such performance.

Generally, Comm Centrality (αComm) has the highest performance up to a certain fo. Then, Par-

ticipation Coefficient (αPC) overcomes Comm Centrality (αComm) only in the SI and SIR

dynamics. Afterwards, in the SI, SIR, and IC dynamics, Modularity Vitality targeting bridges

(a�MV) outperforms all remaining measures. The LT dynamics pose different outcomes. At first,

hub-like nodes using Community-based Centrality (αCBC) or Map Equation Centrality

(αMapEq) outperform the remaining measures. After exceeding a certain fo, several measures

may show high performance, namely Community-based Mediator (αCBM), Modularity Vitality

targeting hubs (aþMV), Modularity Vitality targeting hubs and bridges (|αMV|), Map Equation

Centrality (αMapEq), and/or Comm Centrality (αComm).

We note that a divergence in scale in the output of the diffusion models occurs among the

real-world networks. For instance, the performance of the community-aware centrality mea-

sures in networks with a weak community structure is more comparable with degree centrality

than in networks with a strong community structure. However, the divergence in scale is less

significant than in synthetic networks. Moreover, unlike synthetic networks, differences in the

performance of the community-aware centrality measures exist in real-world networks under

the SI, SIR, and IC dynamics. A high variance between the curves is seen regardless of whether

the network has a strong or weak community structure strength.

The study’s results show that the SI, SIR, and IC models behave similarly to synthetic net-

works, but the dynamics differ in real-world networks based on the strength of their commu-

nity structure. In networks with a weak community structure, bridge-like nodes lead to higher

outbreaks/activations until hub-like nodes perform better. However, bridge-like nodes always

perform better in networks with a strong community structure. Regarding the LT dynamics,

hub-like nodes outperform other measures up to a certain fo, and after that, other measures

with preferences for hub-like, bridge-like, or both types of nodes show better performance.

Additionally, real-world networks have a more pronounced variance between the curves

regardless of their community structure strength, showcasing their unique characteristics that

diversely affect the network’s dynamics. This contrasts with synthetic networks, where all

parameters are controlled.

6 Discussion

In this section, we address questions related to why the results of the dynamic models seen

with the real-world networks are obtained. We refer to the fraction of initially infected/acti-

vated nodes (fo) as “budget availability” thenceforth.

(1) Why is it more beneficial to target bridge-like nodes at low budget availability and

hub-like nodes at high budget availability in the SI, SIR, and IC diffusion models when the

network has a medium to weak community structure strength? As it was previously seen, in

networks with a medium to weak community structure strength, Comm Centrality (αComm)
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generally results in the highest outbreak when the budget is limited. To investigate why we

take the Kegg Metabolic network, which has a weak community structure strength (μ = 0.466).

Using this network, we compare in Fig 7 the position of the top nodes chosen based on low

(i.e., fo = 1%), medium (i.e., fo = 25%), and high (i.e., fo = 40%) budget availabilities. For com-

parison purposes, we take the various budget availabilities according to the rankings based on

Comm Centrality (αComm), K-shell with Community (αks), and Modularity Vitality targeting

hubs (aþMV). As we can see in Fig 7, Comm Centrality (αComm) targets nodes distributed across

the network when the budget is either low (i.e., fo = 1%) or medium (i.e., fo = 25%). These

nodes yield a higher spreading capability in the SI, SIR, and IC models, as Fig 6 shows.

Fig 7. Comparing the position of the top nodes in the Kegg Metabolic network (μ = 0.466). The top nodes are chosen at a low budget availability (fo
= 1%), medium budget availability (fo = 25%), and high budget availability (fo = 40%). The bigger nodes in the left, middle, and right figures are the top

nodes ranked by Comm Centrality (αComm), K-shell with Community (αks), and Modularity Vitality targeting hubs (aþMV), respectively.

https://doi.org/10.1371/journal.pone.0306561.g007
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In contrast, with K-shell with Community (αks), a measure that generally underperforms in

these models, the nodes chosen are close to each other and embedded in the core of the net-

work. Thus, the spreading virus or piece of information will die out before it reaches the per-

ipherical areas in the network. Now, why do hub-like nodes targeted using Modularity Vitality

targeting hubs (aþMV) at high budget availability yield the highest outbreak in the SI, SIR, and

IC models? Referring back to Fig 7, when fo = 40%, as we can see, the nodes are distributed

even more than Comm Centrality (αComm) across all the regions in the network. Thus, it is

normal to have a higher outbreak, as the virus/information would reach all the peripherical

areas of the network and its core.

(2) Why is it more beneficial to target bridge-like nodes, regardless of the budget avail-

ability, in the SI, SIR, and IC diffusion models when the network has a strong community

structure strength? We have seen that bridge-like nodes always perform well when the net-

work has a strong community structure strength. The distinction lies in which community-

aware centrality measure with a preference to bridge-like nodes yields the highest outbreak.

The results show that Comm Centrality (αComm) generally performs best when the budget is

limited. Conversely, when the budget availability is high, Modularity Vitality targeting bridges

(a�MV) overcomes all the measures (see networks Ego Facebook and Facebook Politician Pages

in Fig 6). To investigate these results, we visualize in Fig 8 the Facebook Politician Pages net-

work, which has a strong community structure strength (μ = 0.111).

For comparison purposes, the top nodes visualized are based on Comm Centrality (αComm),

Modularity Vitality targeting hubs (aþMV), and Modularity Vitality targeting bridges (a�MV). As

we can see, in this network with a strong community structure, when the budget is low (i.e., fo
= 1%) and medium (i.e., fo = 25%), the top nodes ranked by Comm Centrality (αComm) are

widespread between and across many communities. This spread indicates that the virus/infor-

mation has many venues to further expand into, permitting a higher outbreak. As the budget

increases to 40%, Modularity Vitality targeting bridges (a�MV) takes over. The nodes selected by

it also spread across many regions in the networks, however, not to the extent of Comm Cen-

trality (αComm), which reaches even the peripherical communities in the network. Indeed,

Modularity Vitality targeting bridges (a�MV) focuses on bridges between communities and has a

preference to target more nodes inside big communities rather than the peripherical areas.

Thus, targeting bridges connecting communities and simultaneously focusing on big commu-

nities for higher outbreaks is more effective since small and peripherical communities cannot

be leveraged as much as big communities if the budget is high and the network has a strong

community structure. Thus, under the SI, SIR, and IC dynamics, choosing nodes inside and

between the big communities diffuses the information more widely internally and externally.

In contrast, small peripherical communities are isolated and do not have many pathways for

the virus/information to spread.

We also shed light on how Modularity Vitality targeting hubs (aþMV) behaves. At fo = 0.40,

Modularity Vitality targeting hubs (aþMV) does not target the community colored in fuchsia,

the biggest community in the network. It does not since a node removed from a big and

well-connected community will not change the network’s modularity significantly. In con-

trast, a hub removed from a smaller community may shatter that community. Conse-

quently, when ranked according to Modularity Vitality targeting hubs, these nodes would

receive a higher score (aþMV). Thus, having big communities not targeted in a network with a

strong community structure yields lower reachability of the virus/information. The behav-

ior is the opposite in a network with a weak community structure. Since all the small com-

munities surrounding a big community will be activated/infected, the infection/information

has a higher probability of entering the big community as there are many pathways to enter
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it, causing an internal avalanche of infections/activations (see Kegg Metabolic in Fig 7 at

fo = 40%).

(3) Why is it more beneficial to target hub-like nodes at low budget availability in the

LT model? Results reveal that the dynamics on the LT model contrast with that of the SI, SIR,

and IC models. Indeed, bridge-like nodes are always preferred in the latter set of models when

the budget is limited. However, with the LT model, under limited budget availability, hub-like

nodes targeted by the Map Equation Centrality (αMapEq) diffuse better the virus/information

Fig 8. Comparing the position of the top nodes in the Facebook Politician Pages network (μ = 0.111). The top nodes are chosen at a low budget

availability (fo = 1%), medium budget availability (fo = 25%), and high budget availability (fo = 40%). The bigger nodes in the left, middle, and right

figures are the top nodes ranked by Comm Centrality (αComm), Modularity Vitality targeting hubs (aþMV), and Modularity Vitality targeting bridges

(a�MV), respectively.

https://doi.org/10.1371/journal.pone.0306561.g008
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across the network. To understand why this phenomenon occurs, we visualize two structurally

different networks, namely the Hamsterster and Facebook Politician Pages networks in Fig 9.

In these two networks, the Map Equation Centrality (αMapEq) shows good performances up to

a specific budget. Suppose that a piece of information is circulating around a given commu-

nity. If this community is well-connected (i.e., if it has a high internal density compared to its

external connections), the piece of information will never enter it [40, 41]. This trend is even

more pronounced when the nodes have a high threshold, even if the network has a weaker

community structure.

The Map Equation Centrality (αMapEq) overcomes this obstacle in the LT model by target-

ing nodes inside all the network communities and not around them. Because the Map Equa-

tion Centrality (αMapEq) correlates with the node’s intra-community links, the random walker

has a higher chance of staying in nodes with a high internal degree. Thus, these nodes tend to

be hub-like rather than bridge-like nodes, as seen in the two networks in Fig 9. For demonstra-

tion purposes, the nodes targeted by Community Hub-Bridge (αCHB) and Comm Centrality

(αComm) are also shown. These two measures perform poorly on the LT model when the bud-

get is limited.

As we can see, Community Hub-Bridge (αCHB) picks many nodes inside a few communi-

ties, missing many regions in the network. Concerning Comm Centrality (αComm), since the

top nodes picked are more frequent between the communities rather than the inside as it has a

preference for bridge-like nodes, this will not be enough at low budget availability for the piece

of information to enter the tightly-knit communities given the complex contagion dynamics

of the LT model [40, 41]. Therefore, at a low budget availability, ensuring a piece of informa-

tion starts by nodes embedded in their communities such that these communities spread

across all the network regions is the best approach for effective diffusion. If bridge-like nodes

are targeted at low budget availability, the information will not be capable of entering high-

density communities. Note that this behavior contrasts with the behaviors seen with the SI,

SIR, and IC models. Indeed, in the latter set of models and at low budget availability, bridge-

like nodes play the most influential role in diffusion since, in these models which follow the

simple contagion dynamics, bridge-like nodes have a higher chance to enter many communi-

ties and cause an avalanche of activations/infections.

To go further, Centola and Macy [49] have theoretically proven that complex contagions,

such as contagions that spread in the LT model, differ from simple contagions, by tackling

Granovetter’s seminal work on the “strength of weak ties” [50]. They showed that not all

contagions spread the same way on weak ties, ties that connect different communities. For

simple contagions, it suffices one single contact such as the spread of disease or information.

However, complex contagions need social reinforcement, as they involve costly or risky

actions. If bridges are not wide, that is they only bridge two distant clusters but do not have

several connections in the community they belong to, complex contagions cannot be easily

diffused as the probability of social reinforcement taking place is very low. These results go

hand in hand with the study presented in this article. Community-aware centrality mea-

sures are divided into two main groups: those prioritizing hubs, and those targeting bridges

that connect distant communities. As demonstrated in the LT model which depicts the dif-

fusion of complex contagions, to achieve higher activation on low budget availability, diffu-

sion must start from within the communities. This is why as Map Equation Centrality

outperforms the other measures. Indeed, we can clearly see that the bridge-like nodes

selected lack extensive connections within their communities, such as the ones chosen by

Comm Centrality. This renders the diffusion of a complex contagion challenging and, and

at low budget availability, impossible, as social reinforcement through those bridges is

unattainable.
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Fig 9. Comparing the position of the top nodes in the Hamsterster and Facebook Politician networks. The top nodes are chosen at a low budget

availability (fo = 1%) and medium budget availability (fo = 25%). The bigger nodes in the left, middle, and right figures are the top nodes ranked by Map

Equation Centrality (αMapEq), Community Hub-Bridge (αCHB), and Comm Centrality (αComm), respectively.

https://doi.org/10.1371/journal.pone.0306561.g009
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(4) Why is it more beneficial to target both hub-like and bridge-like nodes simulta-

neously or bridge-like nodes only at high budget availability in the LT model?

At high budget availability, results show that either hub-like and bridge-like nodes targeted

simultaneously using Modularity Vitality targeting hubs and bridges (|αMV|) or bridge-like

nodes only using Comm Centrality (αComm) yield the highest outbreak. These trends also con-

trast with the ones found in the SI, SIR, and IC models. At high budget availability, the net-

works with the latter set of models showed good performance with either hub-like nodes

targeted with Modularity Vitality targeting hubs (aþMV) or hub-like nodes targeted with Modu-

larity Vitality targeting bridges (a�MV), depending on the community structure strength. This

leads us to investigate why the LT dynamics also diverge when the budget availability is high.

We visualize Ego Facebook and Facebook Politician Pages to depict the two trends regarding

the outperformance of Modularity Vitality targeting hubs and bridges (|αMV|) in the former

network and bridge-like nodes only using Comm Centrality (αComm) in the latter network in

Fig 10. For comparison purposes, we also choose Community Hub-Bridge (αCHB) to be repre-

sented as well.

Discussing first the Facebook Politician Pages network, we can see that both Modularity

Vitality targeting hubs and bridges (|αMV|) and Comm Centrality (αComm) target nodes that all

well-distributed, internally and externally, across all the communities in the network, unlike

Community Hub-Bridge (αCHB) which targets a limited number of communities. Since the

communities in Facebook Politician Pages are not of equivalent sizes, Comm Centrality

(αComm) yields a higher activation rate as the difference between Modularity Vitality targeting

hubs and bridges (|αMV|) and Comm Centrality (αComm) is that the latter targets more nodes

on the peripherical communities. In contrast, in the Ego Facebook network, since there is a

smaller variance in the community size distribution, targeting hub-like and bridge-like nodes

simultaneously using Modularity Vitality targeting hubs and bridges (|αMV|) assures that the

diffusion will spread across the communities as small peripherical communities do not exist.

The question is, why do we observe such behavior in the LT model rather than the behavior

seen with Modularity Vitality targeting hubs (aþMV) and Modularity Vitality targeting bridges

(a�MV) in the SI, SIR, and IC dynamics. Targeting nodes inside the communities satisfies the

complex contagion dynamical conditions of the LT model for a higher activation rate [40, 41].

However, with a higher budget availability, bridge-like nodes also play a role since many are

targeted. Subsequently, at high budget availability in the LT dynamics, enough hub-like and

bridge-like nodes will make the diffusion spread farther, rather than just targeting hub-like

nodes or bridge-like nodes independently. Moreover, as we discussed previously, a major

drawback for Modularity Vitality targeting hubs (aþMV) is that it misses hub-like nodes in big

communities since they are easily replaced by others and subsequently they do not receive a

high centrality score. Hence, it falls back in the LT dynamics as all communities should be tar-

geted internally before externally for higher activation rates. We visualize the Ego Facebook

network in Fig 11 with the top 40% nodes ranked by all the Modularity Vitality variants (i.e.,

aþMV , a�MV , and |αMV|) to show how Modularity Vitality targeting both hubs and bridges (|αMV|)

is well suited for the LT dynamics as it assures internal diffusion and external diffusion by

effectively utilizing the high budget availability. The red dashed lines highlight that two large

communities in the network are not targeted by Modularity Vitality targeting hubs (aþMV)

despite having a budget of fo = 40%. In contrast, Modularity Vitality targeting both hubs and

bridges (|αMV|) targets hub-like nodes inside all the communities and a set of bridges between

them.

The best performing community-aware centrality measures under the different community

structure strength, budgets, and models are summarized in Table 2.
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Fig 10. Comparing the position of the top nodes in the Facebook Politician Pages and Ego Facebook networks. The top nodes are chosen at a

medium budget availability (fo = 25%) and high budget availability (fo = 40%). The bigger nodes in the left, middle, and right figures are the top nodes

ranked by Modularity Vitality targeting hubs and bridges (|αMV|), Community Hub-Bridge (αCHB), and Comm Centrality (αComm), respectively.

https://doi.org/10.1371/journal.pone.0306561.g010
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(5) Comparing the dynamics of communities identified by Infomap and Louvain, why

does the behavior of the community-aware centrality measures in the SI, SIR, and IC

diverge when the budget is low to medium?

Results show that in the SI, SIR, and IC models, with a budget availability varying from low

to medium, the nodes targeted by the community-aware centrality measures induce different

dynamics when Infomap identifies the communities compared to the communities identified

by Louvain. The measures having preferences for bridge-like nodes, namely Comm Centrality

(αComm) and Community Hub-Bridge (αCHB), underperform with Louvain as shown in the

first three rows of Fig 12 for the Hamsterster network.

We visualize the Hamsterster network with its communities identified by Infomap and

Louvain to clarify why this occurrence happens in Fig 13. We also show the histogram of the

community size distribution in Fig 14 of the Hamsterster network using both Infomap and

Louvain.

Generally, Infomap yields high variance in the sizes of the communities with a power-law

distribution. Louvain uncovers fewer communities with more uniform sizes having a lower

variance. For instance, in the Hamsterster network, Infomap identifies 64 communities with a

maximum size of 692 and a minimum size of 2. Conversely, Louvain uncovers 13 communities

with a maximum size of 307 and a minimum size of 6. As Comm Centrality (αComm) exploits

bridge-like nodes in all of the communities of the network, either small or large, having a

more uniform size distribution with less variance diminishes Comm Centrality’s power.

Indeed, the bridge-like nodes’ frequency undoubtedly decreases with Louvain. As we can see

Fig 11. Comparing the position of the top nodes in the Ego Facebook networks. The top nodes are chosen at a high budget availability (fo = 40%).

The bigger nodes in the left, middle, and right figures are the top nodes ranked by Modularity Vitality targeting hubs and bridges (|αMV|), hubs only

(aþMV), and bridges only (a�MV), respectively.

https://doi.org/10.1371/journal.pone.0306561.g011

Table 2. Summary of the best performing community-aware centrality measures.

Community structure strength Budget SI SIR IC LT

Strong community structure Low αComm (bridge-like) αComm (bridge-like) αComm (bridge-like) αMapEq (hub-like)

Strong community structure High a�MV (bridge-like) a�MV (bridge-like) a�MV (bridge-like) |αMV| (hubs & bridges), αComm (bridge-like)

Weak community structure Low αComm (bridge-like) αComm (bridge-like) αComm (bridge-like) αMapEq (hub-like)

Weak community structure High aþMV (hub-like) aþMV (hub-like) aþMV (hub-like) |αMV| (hubs & bridges), αComm (bridge-like)

https://doi.org/10.1371/journal.pone.0306561.t002
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Fig 12. Comparing the trends of the various dynamic models in Hamsterster with its communities identified by Infomap and Louvain. The first,

second, third, and fourth rows indicate the results of the (A) SI model, (B) SIR model, (C) IC model, (D) LT model.

https://doi.org/10.1371/journal.pone.0306561.g012
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in Fig 13, when the budget is fo = 1%, and the communities are identified by Infomap, Comm

Centrality’s top nodes are well-distributed across the network in opposition to its top nodes

selected when communities are determined by Louvain where they are situated in the core of

the network. Similarly is the case at fo = 25%.

Fig 13. Comparing the position of the top nodes in the Hamsterster network having its communities identified by Infomap and Louvain. The top

nodes are chosen at a low budget availability (fo = 1%) and medium budget availability (fo = 25%). The bigger nodes in the left, middle, and right figures

are the top nodes ranked by Comm Centrality (αComm), Community Hub-Bridge (αCHB), and Modularity Vitality targeting hubs (aþMV ), respectively.

https://doi.org/10.1371/journal.pone.0306561.g013
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(6) Comparing the dynamics on communities identified by Infomap and Louvain, why

do the dynamics of the community-aware centrality measures in the LT diverge when the

budget availability is high?

Results show that the dynamics of the LT model differ from that of the SI, SIR, and IC even

when uncovering the communities with the Louvain algorithm. As the findings generally

show, the differences in the outbreak can be seen when the budget is limited with the stated set

of models. However, with the LT model, the differences are featured at high budget availability

(see the last row of Fig 12). These differences accentuate how the LT dynamics differ from the

remaining models. Yet, results show that bridge-like nodes also play a lesser role when Louvain

identifies the communities. This is clear when fo exceeds 0.47 in the LT dynamics of Hamster-

ster in the last row of Fig 12. At this given budget range, Comm Centrality (αComm) outper-

formed the remaining measures with Infomap. However, Modularity Vitality targeting hubs

and bridges (|αMV|) outperformed with Louvain. In addition, we note that Map Equation Cen-

trality (αMapEq) and Community-based Centrality (αCBC) show superior performances with

Louvain as these measures prioritize hub-like nodes, which are pervasive with Louvain as com-

pared to Infomap.

7 Conclusion

Modeling complex network dynamics is a major breakthrough in describing and understand-

ing the real world. Researchers from various disciplines, such as sociology, epidemiology, and

physics, have developed diffusion models deemed to be interdisciplinary in nature. These dif-

fusion models differ mainly in their underlying conditions and states as the dynamic process

begins in a given network. In the vast data era we live in, a myriad of unique topological char-

acteristics characterizes networks. One of the prominent characteristics is the network’s com-

munity structure. Indeed, the community structure affects any diffusive phenomena on the

network.

That being said, finding the most important nodes that play a role in accelerating or inhibit-

ing a diffusion phenomenon within and across these communities is of utmost importance.

Community-aware centrality measures acknowledge the network’s community structure and

Fig 14. Histograms of the community size distribution of the Hamsterster network. Communities are identified by Infomap and Louvain.

https://doi.org/10.1371/journal.pone.0306561.g014
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aim to identify key nodes accordingly. Some measures prioritize hub-like nodes, while others

prioritize bridge-like nodes. Still, the aim at the end is to maximize the diffusion (or inhibit it)

under any dynamic model in a network.

Numerous community-aware centrality measures and diffusion models have been pro-

posed in the literature. This article investigates the interplay between the diffusion dynamics,

the community-aware centrality measures, and the network’s topological characteristics. More

specifically, we analyze how the diffusive power of nodes selected based on various commu-

nity-aware centrality measures changes with respect to the model and the network at hand.

Four diffusion models have been simulated, starting with a set of initial nodes based on the

community-aware measures under study on synthetic and real-world networks. The diffusion

models studied are the Susceptible-Infected (SI), Susceptible-Infected-Recovered (SIR), Inde-

pendent Cascade (IC), and Linear Threshold (LT) models.

Results show that the strength of the community structure and budget availability signifi-

cantly impact how diffusion spreads. Furthermore, the SI, SIR, and IC dynamics, which belong

to simple contagions, show a convergent behavior, while the LT dynamics, belonging to com-

plex contagions, diverge within a given community structure strength and budget availability.

By controlling the community structure strength in synthetic networks, we observed that the

community-aware centrality measures are more profitable in networks with a strong commu-

nity structure strength. With real-world networks with a strong community structure under

the SI, SIR, and IC dynamics, bridges are always preferred regardless of the budget. With the

LT dynamics, hub-like nodes are preferred when the budget is limited or high. However, when

the budget increases, hub-like and bridge-like nodes are preferred. In networks with a weak

community structure, with the SI, SIR, and IC dynamics, bridge-like nodes are preferred, then

distant hub-like nodes take over at high budget availability. However, with the LT dynamics,

hub-like nodes are preferred at a low budget, while more interlinked nodes with hub-like

nodes are preferred from medium to high budget availability. We also analyzed the impact of

the community detection algorithm, and results showed that in the SI, SIR, and IC dynamics,

the performance of the measures changes when the budget is limited. In contrast, with the LT

dynamics, differences are seen when the budget availability is high. The differences between

the diffusion models, mainly seen at a limited budget availability, is credited to the fact that the

conditions in the SI, SIR, and IC models are well suited to select bridge-like nodes as it is easier

for the virus/piece of information to circulate from one community to another compared to

the LT model. Indeed, if the virus/piece of information is initiated in the well-connected com-

munities under the LT dynamics, the community will never be part of the occurring diffusive

phenomenon.

The extensive experiments shed light on how the diffusion dynamics, the position of the

nodes initially activated, the network’s community structure strength, and the budget availabil-

ity are interconnected. Given the knowledge of one or the other, one can choose the suitable

measure for running the most effective diffusion on the network.
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