
HAL Id: hal-04567995
https://univ-pantheon-assas.hal.science/hal-04567995

Preprint submitted on 3 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

A Comprehensive Analysis of Production Efficiency: A
Tax Reform Perspective

Laurence Jacquet, Etienne Lehmann

To cite this version:
Laurence Jacquet, Etienne Lehmann. A Comprehensive Analysis of Production Efficiency: A Tax
Reform Perspective: CRED Working Paper 2024-04. 2024. �hal-04567995�

https://univ-pantheon-assas.hal.science/hal-04567995
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


CRED WORKING PAPER no 2024-04

A Comprehensive Analysis of Production Efficiency:
A Tax Reform Perspective

May, 2024

LAURENCE JACQUET* ETIENNE LEHMANN†

*CY Cergy Paris Université, CNRS, THEMA, F-95000, Cergy, France.
†Université Paris-Panthéon-Assas, CRED, F-75005, Paris, France.



A Comprehensive Analysis of Production Efficiency:
A Tax Reform Perspective*

Laurence JACQUET† Etienne LEHMANN‡

May 3, 2024

Abstract

Policies that impact the production sector, such as intermediate goods taxation (e.g. taxing robots)
and trade liberalization create winners and losers. When do we need to integrate pre-distribution
concerns in the design of these production policies? Should we consider the endogenous changes
of factor prices in tax formulas? We show that the answers to these two questions depend only
on the features of the income tax system. More precisely, can the tax system distinguish incomes
from each factor of production? Can it be reformed along the so-called “GE-replicating directions",
reproducing the impact of factor price adjustments on taxpayers’ utility? If the answer to either
question, or both, is “no", the design of production policies should also take into account its pre-
distributive role and all formulas reveal novel, empirically implementable “GE multipliers”. These
multipliers shape tax systems to correct for market failures as well as for the price incidence effects.
In contrast, if the answer to both questions is “yes", it is Pareto-improving to design production
policies solely to enlarge production possibilities and the “GE multipliers” shape the income tax
system only to account for market failures. We illustrate these insights with realistic tax systems and
practical examples of production policies.
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I Introduction

Over the last decade, popular demand for better income redistribution has risen in developed coun-

tries, as exemplified by movements such as Occupy Wall Street in the US. However, how to reform the

tax system remains a complex issue, all the more since individuals differ in their abilities to supply differ-

ent production factors, each with its own price, thereby creating a pre-distribution problem.1 Moreover,

production factors can be imperfect substitutes and imperfect competition within the production sector

can occur. In this context, tax reforms do not only affect the supply of factors. Changes in the supply of

factors also change factor prices through demand responses of the production sector. Changes in prices in

turn affect the supply of factors, and so on. Addressing how these General Equilibrium (GE) adjustments

modify the desirability of tax reforms and the quantitative evaluation of their effects is the first question

addressed in this paper. Second, there exist a variety of policies that exclusively impact the production

sector,2 e.g. taxation of intermediate goods (including taxation of robots and taxation of AI), public

production, commodity taxation, trade openness, competition policy or business-focused environmental

regulations. The second research question addressed in this paper is whether these “production policies”

should be designed solely to improve production possibilities, following what we call the “production

efficiency principle”, or whether their design should also encompass their pre-distribution effects.3

To address these questions, we consider a model in which taxpayers differ along multiple dimensions

of unobserved heterogeneity, supply different production factors, hence receive income from a variety

of sources.4 The supply side of the model is described by utility-maximizing taxpayers who take factor

prices as given. Conversely, the production sector is represented through inverse demand functions. This

reduced-form description of the demand side of the model allows us to derive results that are robust to

various market frictions and a large set of microfoundations for the production sector and production

policies.

Adopting a tax perturbation approach, we identify the existence of specific directions of tax reforms

that have the same effects as changes in factor prices at the GE. We outline, for any tax system, how to

easily characterize these directions, which we call “GE-replicating directions". Surprisingly, the answers

to our two seemingly independent research questions depend both on whether the tax system distin-

guishes incomes from each factor of production and whether it already contains or can be improved by

tax reforms in the GE-replicating directions.
1Pre-distribution is the way in which the market distributed rewards, such as factor prices. (Hacker, 2011, Stiglitz, 2018)
2Our analysis of production policies extends to examining the impact of various shocks that alter the production set, such as

technological advancements or expanded trade opportunities.
3Drawing from the policy matrix introduced by Rodrik and Stantcheva (2021), this question can be reframed as whether

policies ought to intervene at the production stage, specifically on factor prices.
4In tax theory, it is usually assumed that the taxpayer earns a single type of income, see for instance Mirrlees (1971),

Diamond (1998), Saez (2001) or Saez (2002a). Tax models with multidimensional types and multiple incomes are studied in
(Mirrlees, 1976, Kleven et al., 2007, Golosov et al., 2014, Spiritus et al., 2023, Boerma et al., 2022, Golosov and Krasikov,
2023).
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First, we show that the effects of a tax reform can be decomposed into its usual Partial Equilibrium

(PE) effects, holding factor prices constant and the effects of price adjustments at the GE. Consequently,

the formulas describing the impact of tax reforms and the optimal tax formulas use novel statistics called

GE multipliers, along with familiar elasticity concepts. For each factor production, the corresponding

GE multiplier captures, in two empirical components, the effects of price adjustments (i) on the factor

supply, consumption and utility of taxpayers and (ii) on tax revenue, holding constant factor supply and

consumption of taxpayers. In tax formulas, the first component of the GE-multiplier differs from zero

once the tax system is not optimal along all the GE replicating directions. The second component differs

from zero once there is a market failure. It is equal to the percentage difference between the marginal

product and the price of the production factor, regardless of the type of market friction. GE-multipliers,

can be calculated from existing data on behavioral responses (including cross-base responses and income

effects) and from a calibration of inverse demand elasticities, which use elasticities of substitution across

production factors, potential markups or measures of externalities within the production sector.

Our tax formulas and GE-multipliers can then be viewed as a practical guide for tax reforms and a

synthesis of prior tax formulas, clarifying their discrepancies. In Diamond and Mirrlees (1971), in the

long-run model of Saez (2004), or in Saez and Zucman (2023), the fact that the tax systems distinguish

each production factors and incorporate their GE-replicating directions clarifies why optimal tax formu-

las do not depend on the degree of substitutability between production factors.5 Conversely, tax systems

in Stiglitz (1982), Naito (1999), in the short-run model of Saez (2004), in Naito (2004), Rothschild and

Scheuer (2013, 2016), Jacobs (2015), Ales et al. (2015), Ales and Sleet (2016), Sachs et al. (2020) and

Schultz et al. (2023) do not differentiate the type of labor generating income. Consequently, the degree

of substitutability between factors shapes their tax formulas which corresponds to our GE-multipliers

accounting for price adjustments. Should we introduce imperfect competition into these models, our

GE-multipliers would also shape the tax systems to correct for the market failures.

In many countries, the tax system consists of many schedules, depending on a single tax base and

with restricted forms. Thus our analysis goes beyond characterizing optimal tax systems without any

restrictions on their forms (employing ordinary differential equations). We also provide optimal tax

formulas for schedular tax systems, where the tax system is the sum of several (possibly non-linear)

income-specific functions,6 as well as for comprehensive tax systems, which depend on the sum of dif-

ferent income sources.7 When the tax system distinguishes incomes from each factor of production and
5There is (linear) tax rate for each income factor in Diamond and Mirrlees (1971) and there is a specific tax rate for each

occupation and each occupation corresponds to a specific factor of production in the long-run model of Saez (2004). In this
case, the GE-replicating directions are linear and inherent to the tax systems.

6Costa Rica, Denmark, Finland, Greece, Hungary, Iceland, Israel, Italy, Latvia, Lithuania, Netherlands, Norway, Poland
Slovenia, Spain, Sweden, Türkiye have schedular tax systems, as detailed in Hourani et al. (2023, Table A1).

7The tax systems in Switzerland, the United Kingdom and the United States can be viewed as close approximations to
comprehensive ones, as highlighted in Hourani et al. (2023, Table A1).
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is either unrestricted or schedular, we show that the system can be reformed along all the GE-replicating

directions. Consequently, these tax systems are shaped by GE-multipliers solely to address market fail-

ures. When such failures are absent, as in Scheuer (2014) with a tax system distinguishing salary from

entrepreneurial incomes, there is no need to pre-distribute income through factor prices (i.e. our GE-

multipliers are nil). In contrast, when wage and entrepreneurial income are comprehensively taxed,

factor prices play a pre-distributive role and GE-price adjustments (captured by our GE-multipliers) in-

crease or decrease optimal marginal income tax rates along the income distribution. This arises from the

fact that incomes are not predominantly generated by the same factors of production at different income

levels. This sheds light on the findings of Rothschild and Scheuer (2013, Figure II) and Sachs et al.

(2020, Figure 4), where GE price adjustments decrease optimal marginal tax rates at high income levels

and increase them at low income levels.

Answering our first research question, we also identify conditions for the Pareto efficiency of a tax

system, hence contributing to a rich literature that assesses whether a given reform direction is Pareto-

improving (Werning, 2007, Bourguignon and Spadaro, 2012, Bargain et al., 2014, Lorenz and Sachs,

2016, Jacobs et al., 2017, Hendren, 2020, Bierbrauer et al., 2023, Bergstrom and Dodds, 2023). With a

single source of income, Lorenz and Sachs (2016) provides a formula to test whether a cut in the marginal

tax rate at one level of income, combined with a uniform reduction in tax liabilities above that level, is

self-financing. Assuming multidimensional types and a single source of income, Bierbrauer et al. (2023)

shows that this condition is equivalent to negative revealed welfare weights,8 a result confirmed with

multiple income sources in Spiritus et al. (2023). We demonstrate that combining the Pareto-improving

tax reform obtained at the PE with tax reforms along the GE-replicating directions leads to a Pareto-

improvement at the GE.9

Our second key contribution is characterizing the impact of production policy reforms. We describe

results in terms of production policies although they also apply to any shock that modifies the production

set, such as technological shocks. Production policies directly affect the economy through changes in

factor prices. These price changes, in turn, induce taxpayers to change their supply of factors, thereby

generating further price adjustments. We show that these further GE adjustments are equivalent to those

induced by an adequate combination of tax reforms in GE-replicating directions. Therefore, whether

we need to integrate pre-distribution concerns into the design of production policies depends only on the

features of the income tax system. If it differentiates incomes from each factor of production and contains

all the GE-replicating directions, implementing a production policy reform that enhances the possibility
8Welfare weights are revealed from data in e.g. Bourguignon and Spadaro (2012), Bargain et al. (2014), Jacobs et al. (2017).

For the literature on the inverse approach to indirect taxation, see Christiansen and Jansen (1978) and Ahmad and Stern (1984).
9Saez and Zucman (2023) focuses on a “distributional current-tax analysis” which aims to provide information on the

current distribution of income and tax payments by income groups. In contrast, we focus on a “distributional tax reform
analysis” describing how small tax reforms impact different socio-economic groups.
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frontier, combined with adequate tax reforms in the GE replicating directions, is Pareto-improving. This

is what we call the production efficiency principle. In such cases, the income tax system is rich enough

to mitigate negative pre-distributive effects. In contrast, when a given tax system fails to distinguish

incomes from each factor or does not include some of the GE-replicating directions, we should depart

from the production efficiency principle. In this case, production policies should be designed to induce

pre-distribution through prices. The formulas for a tax reform or an optimal tax system then include

GE-multipliers that mitigate both market failures and price adjustments. We derive a formula to quantify

the impact of any change in production policies on welfare and tax revenue. This formula relies on the

same statistics and estimates used to calculate the GE-multipliers.

We then apply our findings to several examples of production policies, demonstrating how our

reduced-form description of the production sector encompasses a wide array of micro-founded produc-

tion frameworks. We consider, as a first production policy, taxes on intermediate good. These goods

are used by firms under constant or decreasing returns to scale and we allow for a large variety of tax

systems, which may or may not be reformed along the GE-replicating directions. This example is par-

ticularly relevant to the discussion surrounding the taxation of robots and AI, treating them as specific

types of intermediate goods. Using the same framework, we study a second production policy: the de-

mands of factors and goods by a public firm. In all these examples, we retrieve Diamond and Mirrlees

(1971) result that intermediate goods should not be taxed when the income tax system can distinguish

the income from each factor and can be reformed along the GE-replicating directions. Moreover, public

firms should face the same prices of factors as the private firms, as shown in Little and Mirrlees (1974)

but not in the framework of Naito (1999) where the tax system cannot distinguish between different labor

types. We contribute to this large literature that builds upon Diamond and Mirrlees (1971). First, while

Diamond and Mirrlees (1971) considers only linear taxes, we allow for nonlinear taxes. So doing, we

clarify that their result does not rely on the tax system being optimal but only on being optimal along the

GE-replicating directions– a condition we show always satisfied with optimal linear income tax sched-

ules. Interestingly, when the income tax system is nonlinear, the GE-replicating directions are only a very

small subset of the possible directions. We also stress that recommending to tax or not robots, as care-

fully discussed in Guerreiro et al. (2021), Costinot and Werning (2022), Thuemmel (2023) and in Beraja

and Zorzi (2024), depends solely on the features of the income tax system. Another specific production

policy we examine is commodity taxation. We apply Atkinson and Stiglitz (1976) to our framework,

and clarify that taxing or not commodities depends entirely on the features of the income tax system.

Fourth, we show how our findings extend to trade liberalization (as in e.g. Diamond and Mirrlees (1971),

Dixit and Norman (1980), Costinot and Werning (2022), Antràs et al. (2017)), and which income tax

systems mitigate trade-induced inequality. To illustrate the relevance of our framework for competition
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regulation, we study a Cournot duopoly model and show that reducing markups is always desirable when

the tax system can be reformed along its GE-replicating directions. Our last example tackles with firm’s

carbon emissions and the optimal carbon tax.

The paper is organized as follows. The model is presented in the next section. In Section III, we

investigate whether tax reforms have the same effects at the PE and at the GE, we derive tax incidence

formulas as well as optimal tax formulas under unrestricted tax systems, under schedular tax systems and

comprehensive ones. In our GE framework, we also provide an empirical test for the existence of Pareto-

improving tax reforms. In Section IV, we examine the validity of the production efficiency principle

and show how various micro-founded production policies are seamlessly and easily integrated into our

reduced-forms representation of the production sector. These examples span a range of policies, includ-

ing taxation of intermediate goods, robots, and AI, as well as public production, commodity taxation,

trade policies, and competition policies. The last section concludes.10

II The Economy

II.1 Taxpayers

We consider an economy with a unit mass of taxpayers and a production sector that produces a

numeraire good using n factors with n ≥ 2. Taxpayers are endowed with varying characteristics sum-

marized by an m-dimensional vector w = (w1, ..., wm), with m ≥ n. These types are distributed over a

closed and convex type space W ⊂ Rm according to a continuously differentiable density function f(·)
which is positive over W and a CDF F (·).

Each taxpayer supplies xi ≥ 0 units of the ith factor and her supply is denoted by x = (x1, ..., xn).

For instance, a taxpayer can supply effective units of labor x1 in a routine job, effective units of labor

x2 in a creative job, effective units of labor x3 as entrepreneur, investment units in capital x4, investment

units in a specific asset x5, etc. Each supply of factor xi incurs an effort or a utility cost that depends on

the individual type w, as illustrated in the examples of Appendix A.2.

The income generated by supplying factor xi is denoted by yi = pi xi. For the taxpayers, pi rep-

resents the private return on the ith factor they supply and is taken as given. For the firm, it is the price

of this factor. These factor prices are summarized in the vector p = (p1, ..., pn). For instance, if x1

represents effective labor, then p1 denotes the wage per unit of effective labor, and y1 stands for labor

income. Similarly, if x2 corresponds to savings, p2 represents the gross return on savings, y2 signifies

capital income, and so forth. The various sources of income are concisely represented by the vector

y = (y1, ..., yn).
10Formal proofs are relegated to the online appendix, where we also emphasize our framework’s ability to capture the

essential mechanisms by which taxation affects individual behaviors in most macroeconomic models, using a two-period model
with labor and savings. Additionally, we demonstrate how our framework accommodates economies characterized by different
sectors, occupations, or industries, building up on Roy (1951), and also addresses phenomena like income-shifting.
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The preferences of type-w taxpayer are represented by the utility function (c,x;w) 7→ U (c,x;w),

which is assumed to be twice continuously differentiable over Rn+1
+ × W , increasing in the after-tax

income c (with partial derivative denoted Uc > 0) and decreasing in the supply of each factor (with

partial derivative denoted Uxi < 0). The government enforces taxes based on a tax schedule that depends

nonlinearly on all sources of income, denoted as:

T : y = (y1, ..., yn) 7→ T (y) = T (y1, ..., yn) , (1)

After-tax income, hereafter refereed to as consumption, is c =
∑n

i=1 yi −T (y1, ..., yn). Our framework

offers applicability to a wide range of tax-related problems where taxpayers earn different types of in-

come. To illustrate the generality of our model, we present in Appendix A.2 three applications that can

be readily solved using our approach: a two-period model with endogenous labor and savings, a model

where taxpayers choose their sectors of work and a model with income-shifting.11

The marginal rate of substitution between the supply of factor xi and consumption for a taxpayer

with type w, at any bundle (c,x), is given by:

Si(c,x;w)
def≡ −Uxi(c,x;w)

Uc(c,x;w)
. (2)

We assume that the utility function U (c,x;w) is weakly concave in (c,x) and that the indifference sets

are convex in (c,x) for all utility levels and all types w. This implies that matrix
[
Si
xj

+ Si
cSj
]
i,j

is

positive definite, as shown in Appendix A.1.12 A w-taxpayer chooses her supply of factors x to solve:

U(w)
def≡ max

x=(x1,...,xn)
U

(
n∑

k=1

pk xk − T (p1 x1, ..., pn xn) ,x;w

)
(3)

This is equivalent to choosing incomes y to solve:

U(w)
def≡ max

y=(y1,...,yn)
U

(
n∑

k=1

yk − T (y1, ..., yn) ,
y1
p1

, ...,
yn
pn

;w

)
(4)

Both of these formulations will prove useful later on. We assume (See Assumption 1 in Section III below)

that, for each taxpayer of type w ∈ W , these programs admit a single solution with supplies of factors

denoted by X(w)
def≡ (X1(w), ..., Xn(w)) and incomes denoted by Y(w)

def≡ (Y1(w), ..., Yn(w)) where

Yi(w) = pi Xi(w). By aggregating the individual factor supplies of Xi(w), we obtain its total quantity,

Xi, used in the production process, i.e. Xi
def≡
∫
W Xi(w) dF (w). The utility achieved by w-taxpayers

is U(w) = U (C(w),X(w);w) where C(w)
def≡ ∑n

i=1 Yi(w) − T (Y(w)) is their consumption. The

first-order conditions are:

∀i ∈ {1, ..., n} : 1− Tyi(Y(w)) =
1

pi
Si

(
C(w),

Y1(w)

p1
, ...,

Yn(w)

pn
;w

)
. (5)

11In this paper, we consider only intensive margin decisions. However, the model can easily be extended to include extensive
margin decisions such as migration, as in Lehmann et al. (2014) or Janeba and Schulz (2023).

12Ai,j is a term of matrix A for which the row is i and the column is j.
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For each kind i = 1, ..., n of income, the left-hand side is the marginal net-of-tax rate of the ith

income. It corresponds to the marginal gain, in terms of after-tax income, of the ith pretax income yi.

The right-hand side is the marginal rate of substitution between supply of factor xi and after-tax income.

It corresponds to the marginal cost of supplying the ith pretax income, in monetary terms.

II.2 Production sector

The production sector can be made of different firms with potential vertical relations and horizontal

competition. Firms’ market power, rent-seeking behaviors, and production externalities, among other

phenomena, can prevail. The production side is presented in reduced-form. We adopt a highly flexible

specification to describe how private returns depend on factors (X1, ...,Xn) through the following twice

differentiable inverse demand functions:

∀i ∈ {1, ..., n} : pi = Pi (X1, ...,Xn;α) . (6)

where α = (α1, ..., αL) ∈ A ⊂ RL is a vector of policies of dimension L that solely impact the economy

through the production sector, hereafter production policies. These policies influence only the behavior

and interactions across firms, consequently impacting the size of aggregate production and the prices

of various production factors. However, given a specific vector of factor prices, these policies do not

modify taxpayers’ behavior. Examples of such policies encompass taxes on intermediate goods, public

production of the consumption good, trade policies, competition policies, business laws, financial market

regulations, intellectual property protection, among others. The set of production policies is denoted A
and is a convex subset of RL.

The production function is given by the national accounting equation:

∀(X1, ...,Xn;α) : F(X1, ...,Xn;α)
def≡

n∑

i=1

Pi(X1, ...,Xn;α) Xi, (7)

i.e., the GDP on the left-hand side equals the sum of incomes derived from each factor on the right-hand

side.

A specific case arises under perfect competition where the price (equivalently the private return of

factor i) pi coincides with the marginal productivity of the ith factor (equivalently the social return of

factor i), FXi :

∀i ∈ {1, ..., n}, ∀ (X1, ...,Xn,α) : Pi(X1, ...,Xn;α) = FXi(X1, ...,Xn;α) (8)

Prices are then endogenous whenever factors are imperfect substitutes.

Under perfect competition, profits may occur if the production function has decreasing returns to

scale.13 In such a case, or under imperfect competition, to retrieve the national accounting equation (7),
13If function (X1, ...,Xn) 7→ F (X1, ...,Xn) is increasing in each argument and exhibits decreasing returns to scale, then

function (X1, ...,Xn+1) 7→ Xn+1 F (X1/Xn+1, ...,Xn/Xn+1) is increasing in each argument and has constant returns to
scale.
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let Xn+1(w) denote the share of profits received by taxpayers of type w with Xn+1 =
∫
w Xn+1(w) dF (w) =

1 and aggregate profits earned by all taxpayers being equal to pn+1Xn+1 = pn+1. This additional pro-

duction factor Xn+1(w) can be interpreted as an “entrepreneurial factor” which is inelastically supplied

(McKenzie (1959), and Mas-Colell et al. (1995, pp. 134-135)). Equation (7) then still holds, provided

that i is summed from 1 to n+ 1 instead of 1 to n.

Two examples will be especially interesting to discuss.

Example 1. There are two factors (n = 2): labor and capital which are imperfect substitutes.

Example 2. There are two factors (n = 2): low and high skilled labor which are imperfect substitutes.

II.3 Equilibrium

We employ two distinct equilibrium concepts: partial equilibrium (PE) with exogenous prices and

general equilibrium (GE) with endogenous prices. The GE is defined by:

Definition 1 (General Equilibrium (GE)). Given a tax schedule y 7→ T (y) and production policies α,

a GE is a set of prices p = (p1, ..., pn), of incomes Y(w) for each type w of taxpayers, of aggregate

factors (X1, ...,Xn) and of aggregate incomes (Y1, ...,Yn) such that:

i) Incomes Y(w) maximize w-taxpayers utility according to (4), taking prices p as given.

ii) Prices are given by inverse demand functions (6), where aggregate factors and incomes are related

by Xi = Yi/pi and where aggregate incomes (Y1, ...,Yn) sum up individual incomes according to:

Yi
def≡
∫

W
Yi(w) dF (w) = pi Xi. (9)

The PE takes prices as given and thereby omits part ii) of Definition 1, as follows.

Definition 2 (Partial Equilibrium (PE)). Given a tax schedule y 7→ T (y), production policies α and a

set of prices p = (p1, ..., pn), a PE is a set of incomes Y(w) for each type w of taxpayers that maximize

w-taxpayers utility according to (4), taking prices as given.

At the PE, when a tax reform affects factor prices, we take the determination of prices through the

mapping t 7→ (pR1 (t), ..., p
R
n (t)) as given. At the GE, on the other hand, the mapping t 7→ (pR1 (t), ..., p

R
n (t))

is endogenous and determined by (6). Throughout this paper, we assume PE and GE exist and are unique.

II.4 Government

The government chooses the tax policy taking into account how its choice impacts the GE. It faces

the following budget constraint:14

E ≤ B
def≡
∫

W
T (Y(w)) dF (w) (10)

14According to the national accounting equation (7), the production function F represents the production net of the budgetary
costs of product sector policies.
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where B stands for the tax revenue and where E ≥ 0 is an exogenous amount of public expenditure.

The social objective is an increasing transformation Φ of taxpayers’ individual utility U(w) that may be

concave and type-dependent:

W
def≡
∫

W
Φ (U(w);w) dF (w). (11)

where Φ : (u,w) 7→ Φ(u,w) is increasing in individual utility u and twice continuously differentiable.

This specification includes many different social objectives. The objective is utilitarian when Φ(U,w) =

U and weighted utilitarian when Φ(U ;w) = γ(w) U . One obtains maximin when γ(w) equal zero for

every taxpayer except those with the lowest utility level. When Φ(U,w) does not depend on type and

is concave in U , one has Bergson-Samuelson preferences. The utility function U (·, ·;w) is only one

possible cardinal representation of type-w taxpayers’ preferences. Other representations are obtained

using an increasing transformation of U (·, ·;w) such as Φ(U (·;w);w). Therefore, the right-hand side

of (11) can be interpreted as a utilitarian objective following a recardinalization of individual utility. The

government maximizes a linear combination of tax revenue B and social welfare W that we refer as the

government’s Lagrangian:

L
def≡ B +

1

λ
W (12)

where the Lagrange multiplier λ > 0 represents the social value of public funds. We choose to express

the Lagrangian in monetary units instead of utility units.

III Which tax reforms are desirable?

In this section, we start by investigating the impacts of tax reforms, and analyze the behavioral and

price responses to these reforms at both the PE and at the GE. We define a tax reform as follows.

Definition 3. Let R(·) be a twice-continuously differentiable function. A tax reform of direction R(·)
and magnitude t ⪋ 0 replaces the tax schedule y 7→ T (y) by a new tax schedule y 7→ T (y)− t R(y).

zing

For a given income vector y, the change in the tax burden due to the reform is, therefore, given by

t R(y). After a tax reform, the ith price depends on the direction R(·) and the magnitude t of the tax

reform and is denoted by pRi (t). When subjected to a tax reform in the direction R(·), the utility of

w-taxpayers becomes a function of magnitude t ⪋ 0 through:

UR(w, t)
def≡ max

y=(y1,...,yn)
U

(
n∑

i=1

yi − T (y) + t R(y),
y1

pR1 (t)
, ...,

yn
pRn (t)

;w

)
. (13)

Under the perturbed tax schedule y 7→ T (y) − t R(y), YR(w, t) = (Y R
1 (w, t), ..., Y R

n (w, t)) denotes

the w-taxpayers’ incomes, BR(t) the government’s tax revenue (10), W R(t) its social objective (11)
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and L R(t)
def≡ BR(t) + 1

λW R(t) the Lagrangian (12).15

We first investigate the desirability of tax reforms at the PE, i.e. taking as given the determination

of factor prices through the mapping t 7→ (pR1 (t), ..., p
R
n (t)) in Subsection III.1. Second, in Subsection

III.2, we study the desirability of these reforms at the GE where the mapping t 7→ (pR1 (t), ..., p
R
n (t)) is

endogenously dictated by the inverse demand equations (6), as detailed in Definition 1. We show that

behavioral responses are valued based on marginal tax rates alone at the PE, while they are valued based

on the sum of marginal tax rates and new terms, called GE multipliers, at the GE. In Subsection III.3, we

compute GE multipliers thanks to tax reforms in “GE-replicating” directions. These reforms replicate the

effects of price changes on taxpayers’ utility and factor supply and can be simply deduced from the tax

system. In Subsection III.4, we provide the optimal tax formula under an unrestricted tax system and use

this formula to infer the revealed welfare weights. We then proof the existence of Pareto-improving tax

reforms when competition is perfect and when some revealed welfare weights are negative. We finally

provide the optimal tax schedule when the tax system is schedular in Subsection III.5 and when the tax

system is comprehensive in Subsection III.6.

III.1 Tax reforms at Partial Equilibrium

For each w-taxpayer, we define ∂Yi(w)/∂τj , the compensated responses of the ith income with

respect to the jth marginal net-of-tax rate and ∂Yi(w)/∂ρ the income effect on their ith income. For-

mally, we use “compensated” tax reforms of direction R(y) = yj − Yj(w) and magnitude τj to calcu-

late ∂Yi(w)/∂τj that captures only substitution effects.16 We use “lump sum” tax reforms of direction

R(y) = 1 and magnitude ρ to calculate ∂Yi(w)/∂ρ that captures income effects. Compensated and

incomes effects are defined holding prices fixed.17 Finally, we denote ∂Yi(w)/∂log pj , the responses

of the ith income to the jth price log-change. All these responses are computed taking into account the

nonlinearity of the tax schedule, as in Jacquet et al. (2013).

Unlike previous works in the literature, we refrain from assuming that individuals respond smoothly

to tax reforms. Instead, we apply the implicit function theorem to taxpayers first-order conditions (5). To

do so, we make the following assumption on the initial tax schedule and taxpayers’ preferences discussed

in Appendix B.1:

Assumption 1. The initial tax schedule y 7→ T (y) is such that:

i) y 7→ T (y) is twice continuously differentiable,

15Note that when we define the perturbed Lagrangian L R(t), we keep 1/λ at its value before the tax reform. This will be
convenient in Proposition 1.

16The reform and the responses of w-taxpayers, around income Yj(w), are said to be compensated since the j th marginal
net-of-tax rate τj is modified while the level of tax is unchanged at y = Y(w).

17To estimate compensated responses and income effects, the empirical literature relies on differences in how much taxpayers
are “treated” by tax reforms, while changes in prices are the same across taxpayers. Hence, it is PE responses that are estimated.
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ii) the second-order condition associated to the individual maximization program (4) holds strictly, i.e.

the matrix

[
Si
xj

+ Si
cSj

pi pj
+ Tyiyj

]

i,j

is positive definite at c = C(w), x = X(w) and at y = Y(w),

for each type w ∈ W ,

iii) for each type w ∈ W , program (4) admits a unique global maximum.

Assumption 1 prevents any jump in taxpayer’s choices after a small tax reform of magnitude dt. Such

a reform affects taxpayers’ decisions, hence taxpayers’ first-order conditions (5), because of changes in

the n marginal tax rates by Ryj (Y(w))dt (for j = 1, ..., n) or because of a change in the level of tax by

R(Y(w))dt or because of changes in relative prices by ∂log pRj (t)/∂t, which are taken as given at the PE

and will be endogenized at the GE. Changes in the n marginal tax rates induce compensated responses

of the n incomes ∂Yi(w)/∂τj . A change in the level of tax generates income effects ∂Yi(w)/∂ρ and

changes in relative prices imply potential responses of the n incomes ∂Yi(w)/∂log pj . More formally,

when faced with a tax reform, w-taxpayers modify their incomes by (see Appendix B.1):

∂Y R
i (w, t)

∂t
=

n∑

j=1

∂Yi(w)

∂τj
Ryj (Y(w))

︸ ︷︷ ︸
Compensated responses

+
∂Yi(w)

∂ρ
R(Y(w))

︸ ︷︷ ︸
Income effects

+
n∑

j=1

∂Yi(w)

∂log pj

∂log pRj (t)

∂t
.

︸ ︷︷ ︸
Responses to price changes

(14)

By applying the envelope theorem to (13), we obtain, in monetary terms, the effects of a tax reform on

the social welfare of a w-taxpayer (see Appendix B.1):

1

λ

∂Φ
(
ŨR(w, t);w

)

∂t
=


R(Y(w)) +

n∑

j=1

(
1− Tyj (Y(w))

)
Yj(w)

∂log p̃Rj (t)

∂t


 g(w), (15)

where social marginal welfare weights g(w) are defined by:

g(w)
def≡ ΦU (U(w);w)Uc(C(w),X(w);w)

λ
. (16)

Equation (15) gives changes in utility driven by the mechanical effect in tax liability R(Y(w)) and by the

effects of reform-induced changes in prices, while taxpayers’ decisions do not appear in it. The reason for

this is that taxpayers’ decisions are perturbed from their optimum and taxpayers are indifferent to small

changes in their decisions to a first-order approximation. This envelope argument is well understood

since Saez (2001). It however does not apply to prices changes since taxpayers take prices as given.

Applying the envelope theorem to (3), a log change in the jth price has the same impact on utility as a

mechanical increase in consumption of (1− Tyj (Y(w)))Yj(w). Multiplying the mechanical effect and

the effects of prices changes on utility by the welfare weight g(w) leads to the right-hand side of (15).

From (14)-(16), we obtain the following lemma, which is proved in Appendix B.1.
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Lemma 1. At the PE, the impact of a tax reform on the government’s perturbed Lagrangian is:

∂L R(t)

∂t
=

∫

W

{
−
[
1− g(w)−

n∑

i=1

Tyi(Y(w))
∂Yi(w)

∂ρ

]
R(Y(w)) (17)

+
∑

1≤i,j≤n

Tyi(Y(w))
∂Yi(w)

∂τj
Ryj (Y(w))



dF (w) +

n∑

j=1

∂L

∂log pj

∂log pRj (t)

∂t

where:

∂L

∂log pj

def≡
∫

W

{
(
1− Tyj (Y(w))

)
Yj(w) g(w) +

n∑

i=1

Tyi(Y(w))
∂Yi(w)

∂log pj

}
dF (w). (18)

Equation (17) has three terms. The first term captures the impact of changes in tax liabilities

R(Y(w)) on the Lagrangian. This term includes the mechanical effects on government revenue and

social welfare, 1− g(w), as well as the changes in tax revenue due to income effects, which are equal to

the sum of each income effect ∂Yi(w)/∂ρ multiplied by the corresponding marginal tax rate Tyi(Y(w)).

The second term measures the impact of changes in marginal tax rates Ryj (Y(w)) on tax revenue

through substitution effects. It is the sum of the compensated response of each income ∂Yi(w)/∂τj times

the corresponding marginal tax rate Tyi(Y(w)). The third term is novel and captures the impact on the

Lagrangian of changes in factor prices due to the tax reform. To understand this third term, note that a log

change in the price of jth factor affects the Lagrangian via changes in welfare and tax revenue, as detailed

in (18). First, it increases the welfare contribution of w-taxpayers by
(
1− Tyj (Y(w))

)
Yj(w) g(w),

as indicated by (15). In addition, it leads to responses ∂Yi(w)/∂ log pj for each ith income, as shown in

(14). The impact on tax revenue can be calculated by summing up the product of each income source’s

response ∂Yi(w)/∂ log pj and the corresponding marginal tax rate Tyi(Y(w)).

The incidence formula above is expressed in terms of variables that can be empirically measured.

There is a large empirical literature estimating compensated responses ∂Yi(w)/∂τj and income effects

∂Yi(w)/∂ρ (e.g., Saez et al. (2012)). Welfare weights g(w) can be calibrated either from normative

assumptions (Saez and Stantcheva, 2016) or from survey data (Kuziemko et al., 2015). The ith income

response to the change in the jth log price ∂Yi(w)/∂ log pj can then be obtained from Equation (19)

derived in Appendix B.1:

∂Yi(w)

∂log pj
= 1i=j Yi(w) + (1− Tyj (Y(w)))

∂Y u
i (w)

∂τj︸ ︷︷ ︸
Uncompensated term

− Yj(w)

n∑

k=1

∂Yi(w)

∂τk
Tykyj (Y(w))

︸ ︷︷ ︸
Bracket creep terms

, (19)

where ∂Y u
i (w)/∂τj denotes the uncompensated responses of the ith income to the jth marginal tax rate,

holding price fixed, using reforms of direction R(y) = yj . These uncompensated responses are given by

the Slutsky equations:
∂Y u

i (w)

∂τj
=

∂Yi(w)

∂τj
+ Yj(w)

∂Yi(w)

∂ρ
. (20)
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To grasp the intuition behind (19), we reconsider taxpayer’s first-order conditions (5), which equal-

izes marginal gains and costs resulting from a marginal change in the ith income yi:

pi(1− Tyi(Y(w))) = Si

(
n∑

k=1

pkXk(w)− T (p1X1(w), ..., pnXn(w)) ,X(w);w

)
. (21)

Equation (21) balances marginal gains and costs induced by a marginal change in the supply of the ith

factor xi.

The alteration of the jth price induces three effects on these first-order conditions. First, a log change

in the jth price affects the LHS of the jth first-order condition (21) as much as a log change in the jth

marginal net-of-tax rate 1 − Tyj (Y(w)). Second, a log change in the jth price affects consumption in

the marginal rates of substitution in the RHS of (21) by Yj(w)(1 − Tyj (Y(w))), i.e, as much as an

uncompensated change of the jth marginal net-of-tax rate. The combination of these first and second

effects is therefore equivalent to an uncompensated change of the jth marginal net-of-tax rate by dτj =
(
(1− Tyj (Y(w))/pj

)
dpj . It leads to change in factor supplies equal to

((
1− Tyj (Y(w))

)
/pj
)
(∂Xu

i /∂τj),

which shows up in the RHS of (22) as the “uncompensated term”. Third, whenever the tax schedule is

nonlinear, a log change in the jth price holding the jth factor fixed triggers a further change of marginal

tax rates in the LHS of (21) by Xj(w) Tyjyk(Y (w)). These modification induce compensated responses

of the supply of ith factor equal to −Xj(w)
∑n

k=1 (∂Xi(w)/∂τk) Tykyj (Y(w)), which appear in the

RHS of (22) as the “bracket creep term”.18 Adding all of these effects leads to:

∂Xi(w)

∂pj
=

1− Tyj (Y(w)

pj

∂Xu
i (w)

∂τj︸ ︷︷ ︸
Uncompensated term

−Xj(w)
n∑

k=1

∂Xi(w)

∂τk
Tykyj (Y(w))

︸ ︷︷ ︸
Bracket creep terms

, (22)

which eventually leads to (19).

III.2 Tax reforms at General Equilibrium

To analyze the impact of tax reforms on prices in GE, we compute the terms ∂log pRj (t)/∂t in

equations (14), (15), and (17). To achieve this, we use the inverse demand Equations (6) to determine

prices in the GE analysis. According to Definition 1 and Equation (6), for each magnitude t, the prices

(pR1 (t), ..., p
R
n (t)), after the tax reform of magnitude t and direction R verify the following fixed-point

conditions:

∀t,∀i ∈ {1, ..., n} pRi (t) = Pi

(YR
1 (t)

pR1 (t)
, ...,

YR
n (t)

pRn (t)

)
(23)

where the ith aggregate income YR
i (t) is defined from individual ith incomes Y R

i (w, t) thanks to (9). Let

Ξ denote the matrix where the term in the ith line and jth column is the inverse factor’s demand elasticity
18This theoretical mechanism is at the core of the identification strategy of compensated responses by Saez (2003) where

he uses fixed tax schedules (in nominal terms) with high inflation. The empirical strategy relies in comparing, in a period of
high inflation, changes in income of taxpayers near the top-end of a tax bracket, who are likely to creep to the next bracket, to
changes in income of other taxpayers far from this top-end.
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of the ith price pi with respect to the aggregate supply of the jth factor denoted Xj :

Ξi,j
def≡ Xj

Pi

∂Pi

∂Xj
. (24a)

We denote Γ the matrix of factor supply elasticities, where the term Γi,j in the ith row and jth columns

corresponds to the elasticity of the aggregate supply of the ith production factor with respect to the price

of the jth production factor,

Γi,j
def≡ ∂logXi

∂log pj

∣∣∣∣
t=0

=
pj
Xi

∫

W

∂Xi(w)

∂pj
dF (w). (24b)

We denote In the n-identity matrix and make the following assumption:

Assumption 2. The matrix In − Ξ · Γ is invertible.

The matrix In − Ξ · Γ shows up when one log-differentiates (23). Thanks to Assumption 2, one can

apply the implicit function theorem to ensure that equilibrium prices are differentiable with respect to t.

Under perfect competition and when the production function is linear, i.e. F(X1, ...,Xn) =
∑n

i=1Xi,

matrix Ξ is nil. Assumption 2 is then verified. Therefore, by continuity, Assumption 2 remains satisfied

as long as the elasticities of substitution between factors are sufficiently high and competition is not too

imperfect.19 In this context, in Appendix B.2.a, we show how, following a tax reform in the direction R,

responses of aggregate incomes at PE result in log prices changes at the GE. This incidence is detailed

in the following lemma.

Lemma 2. After a tax reform in direction R, the vector ∂ log pR/∂t of log-price changes at the GE is

given by:
∂log pR

∂t
= (In − Ξ · Γ)−1 · Ξ · ∂logY R,PE

∂t
, (25)

where ∂ logY R,PE/∂t is the vector for which the ith row is:

∂YR,PE
i (t)

∂t
=

∫

W




∂Yi(w)

∂ρ
R(Y(w)) +

n∑

j=1

∂Yi(w)

∂τj
Ryj (Y(w))



dF (w), (26)

which measures how aggregate income i reacts to a tax reform in the direction R at the PE.

Tax reforms generate responses in supplies and demands described in Figure 1. After a tax reform, the

initial taxpayers’ responses at PE impacts the supplies of production factors (through matrix Γ) which

modifies prices (as determined by the inverse demand equations (6)). These price changes, in turn,

affect supplies of production factor (through matrix Γ), creating an ongoing loop of interdependence

between prices of production factors and their supplies. Equations (25)-(26) formalize this process of

price adjustments illustrated in Figure 1.
19Using the contracting mapping theorem, the existence and uniqueness of the GE can be shown under the assumption that

for all out-of-equilibrium price p and factor vectors X1, ...,Xn., matrices Ξ · Γ have all eigenvalues with a modulus below a
bound strictly lower than 1.

14



X1, ...,Xn

p1, ..., pn

Demand, Eq. (6), ΞSupply, Eq. (3), ΓTax reforms at PE Production policies α

Figure 1: The GE adjustments following a tax or a production policy reform.

We now want to compute the effects on the Lagrangian resulting from these price adjustments follow-

ing a tax reform in the direction R(·), which are equal to
∑n

j=1 (∂L /∂log pj)
(
∂log pRj /∂t

)
according

to Equation (17) in Lemma 1. For this purpose, let us denote ∂L /∂log p the row vector where the jth

term is ∂L /∂log pj . Using Equation (25) from Lemma 2, we obtain:

Lemma 3. At the GE, the effects of a tax reform on the Lagrangian, through prices, are given by:
n∑

j=1

∂L

∂log pj

∂log pRj
∂t

=
n∑

i=1

ηi
∂logYR,PE

i (t)

∂t
=

n∑

i=1

µi
∂YR,PE

i (t)

∂t
(27)

where for any i ∈ {1, ..., n}, we define the ith General Equilibrium multiplier as

µi
def≡ ηi

Yi
(28)

where the row vector η = (η1, ..., ηn) is defined by:

η
def≡ ∂L

∂log p
· (In − Ξ · Γ)−1 · Ξ. (29)

The GE multipliers depend neither on the direction R(·) nor on the size t of the reform.

Lemma 3 introduces new empirically meaningful variables, the GE multipliers. For each factor,

the associated GE multiplier µi gives the impact of the price adjustments on the Lagrangian when the

ith factor’s supply is modified. This multiplier is the ratio of ηi over aggregate income Yi. This ith

component of vector η indicates the effects on the Lagrangian of the price adjustments induced by a log

change in the ith factor. It sums for all income factors j, the product of two components: the Lagrangian

change caused by a relative change in the jth price, ∂L /∂log pj and the relative change in the jth price

in response to a PE log change in the ith factor. The latter is equal to the term in the jth row and ith

column of matrix (In − Ξ · Γ)−1 · Ξ, according to (25).

Lemmas 1 and 3 yield the following proposition (proofed in Appendix B.2), which characterizes the

incidence of any arbitrary tax reform on the Lagrangian at the GE.

Proposition 1. i) At the GE, the impact of a tax reform on the Lagrangian (12) is:

∂L R(t)

∂t
=

∫

W

{
−
[
1− g(w)−

n∑

i=1

(Tyi(Y(w)) + µi)
∂Yi(w)

∂ρ

]
R(Y(w))

+
∑

1≤i,j≤n

(Tyi(Y(w)) + µi)
∂Yi(w)

∂τj
Ryj (Y(w))



dF (w). (30)
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ii) If the social value of public funds λ verifies:

0 =

∫

W

[
1− g(w)−

n∑

i=1

(Tyi(Y(w)) + µi)
∂Yi(w)

∂ρ

]
dF (w), (31)

and if ∂L R

∂t > 0 (< 0), then reforming the tax schedule in the direction R(·) with a small positive

magnitude t (a small negative t) and rebating the net budget surplus in a lump-sum way is a budget-

balanced reform that is socially desirable.

Part i) of Proposition 1 enables one to evaluate the desirability of a tax reform at the GE. A reform

of the tax system in the direction R(·) with positive (negative) magnitude t improves welfare when

∂L R/∂t > 0 (< 0). According to Part ii) of the proposition, the effect of any admissible perturbation

on the government’s Lagrangian has the same sign as the effect on the social objective of that perturbation

combined with a lump-sum transfer that ensures budget balance. This result remains valid also outside

of the optimum, as long as the weight λ assigned to government’s revenue verifies (31). This result is

noteworthy because it allows for the assessment of the desirability of a tax reform in the direction R(·),
combined with the adequate lump-sum transfer to maintain budget neutrality. Notice that the social value

of public funds λ scales the social welfare weights in (16). Condition (31) therefore states that welfare

weights are normalized to ensure that the revenue loss from a lump-sum transfer is offset by the welfare

gains.20

Equation (30) differs from its PE version (17) only by the inclusion of GE multipliers µi.21 The

presence of endogenous prices and the implied GE effects modify prices along the process described in

Equation (25) and in Figure 1. The GE multipliers µi, defined in Equation (29), indicate how an increase

in aggregate income Yi at the PE impacts the government Lagrangian through price changes at the GE.

When µi > 0 (resp µi < 0), a rise in the ith aggregate income at the PE improves (deters) the Lagrangian

via the GE adjustments of prices. Hence, adding GE multipliers µi to marginal tax rates T ′
i (Yi(w)) in

the right-hand side of (30) suffices to capture how behavioral responses ∂Yi(w)/∂τj and ∂Yi(w)/∂ρ

impact the Lagrangian though the GE price adjustments. Therefore, the incidence of a tax reform at

the GE can be broken down into the incidence of the same reform at the PE level, augmented by the

cumulative impact of this reform on each aggregate income at the PE, times the respective GE multiplier,
20The right-hand side of (31) is obtained from (30) by using tax reforms in the direction R(y) = −1, which implies

Ryj (Y(w)) = 0. We assume that:

1−
n∑

k=1

∫

w∈W

(Tyk (Y(w)) + µk)
∂Yk(w)

∂ρ
dF (w) > 0

i.e. that a positive lump-sum transfer to taxpayers reduces government’s tax revenue, despite income responses. Otherwise,
a lump-sum transfer would simultaneously increase taxpayers’ well being and the government’s revenue so that the initial
economy would be Pareto-dominated.

21The role of GE multipliers µi in our tax perturbation approach is akin to the role of consistency constraint multipliers in
Rothschild and Scheuer (2013, 2014)’s mechanism design approach.
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as described by:
∂L R

∂t
=

∂L R,PE

∂t
+

n∑

i=1

µi
∂YR,PE

i

∂t
. (32)

III.3 The role of GE-replicating tax reforms

In this section, we give a streamlined calculation of the GE multiplier, simplifying it to the assessment

of specific reforms’ incidence. To achieve this, we first demonstrate, in Appendix B.3, that the impact of

any log-change in price on welfare, consumption and factor supplies at the GE can be replicated, at the

PE, through reforms in the directions:

∀y : Rj(y)
def≡
(
1− Tyj (y)

)
yj , (33)

which we refer to as the jth GE-replicating directions. As demonstrated in Appendix B.3, the impact on

taxpayers’ consumption and factors supply of either a log-change in the jth price at the GE or of a reform

of magnitude t = dpj/pj in the jth replicating direction at the PE are identical, as both equally modify

x 7→ U
(∑n

i=1 pi xi − T (p1x1, ..., pnxn) + t Rj(p1x1, ..., pnxn),x;w
)
. In terms of tax policy, this

implies that whatever the initial tax reform with direction R(·), the tax authority can always combine

it with reforms in the GE-replicating directions Rj(·) (for j = 1, ..., n) to maintain factor supplies,

consumption and utility at their PE outcomes. This annihilates the incidence (on taxpayer’s behavior and

welfare) of the price endogeneity. Formally, we show:

Proposition 2. For any given direction R(·), a tax reform of magnitude t in the direction RN (·) defined

by:

∀y : RN (y)
def≡ R(y)−

n∑

j=1

γRj Rj(y), (34)

where Rj(·) is defined by (33) and:

γRj
def≡

n∑

i=1

Ξj,i

Yi

∂YR,PE
i

∂t
=

∂log pR
N

j

∂t
, (35)

has the same impact at the GE on taxpayers’ factor supplies X(w) = X1(w), ..., Xn(w), consumption

C(w) and utility level U(w) as does a reform in the direction R and magnitude t at the PE.

To neutralize the impact of price adjustments induced by reforms in the direction R(·), we construct

in (34) a new direction of tax reforms denoted as RN (·). This new direction subtracts a combination of

GE-replicating directions Rj(·) from the initial direction R(·), with adequate scale factors γRj . In Figure

1, a reform in the direction RN (·) impacts the economy in several stages. First, it affects taxpayers’ factor

supplies through the PE effects of a reform in the direction R(·). Second, it modifies factor supplies via

the PE effects of a reform in the direction −∑n
j=1 γ

R
j Rj(·). Third, these PE effects trigger demand-

driven responses, leading to modifications in prices, that induce further responses in factor supplies, and
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so on. The scale factors γRj in (34) are set so that the second and third effects cancel each other, which

leads to: γRj = ∂log pR
N

j /∂t for j = 1, ..., N , as explained in Appendix B.3. In Figure 1, this implies

that the effects of reforms in the direction RN (·) cease after the first demand-driven responses.22

Following Proposition 2, a reform in the direction RN (·) at the GE and a reform in the direction R(·)
at the PE have the same impact on taxpayers’ utility levels, factor supplies and consumption. Rewriting

taxpayers’ liabilities as T (Y(w)) =
∑n

j=1 pj Xj(w) − C(w), the effects on the government’s La-

grangian of reforms in the direction RN (·) at the GE differ from the effects of reforms in the direction

R(·) at the PE only due to price changes in the former and not the latter. This leads to:

∂L RN

∂t
=

∂L R,PE

∂t
+

n∑

j=1

∂log pR
N

j

∂t
Yj . (36)

Combining (34), (35) and (36) the following lemma provides the difference between the effects of a tax

reform on the Lagrangian at the PE and at the GE:

Lemma 4. At the GE, the effects of a tax reform on the Lagrangian are given by:

∂L R

∂t
=

∂L R,PE

∂t
+

n∑

j=1

(
n∑

i=1

Ξj,i

Yi

∂YR,PE
i

∂t

)(
Yj +

∂L Rj

∂t

)
. (37)

Lemma 4 indicates the differences in the impact of a given tax reform at the PE and at the GE.

Equation (32) defines the GE multipliers from these differences. Comparing Equations (32) and (37)

leads to the following expression for the GE multipliers (see Appendix B.4 for a formal proof):

Proposition 3. The effects of tax reforms on government’s Lagrangian are:

∂L R

∂t
=

∫ {
(g(w)− 1) R(Y(w)) +

n∑

i=1

(Tyi(Y(w)) + µi)
∂Y R,PE

i (w)

∂t

}
dF (w)

where the GE multipliers are given by:

∀i ∈ {1, ..., n} : µi =
FXi − pi

pi
+

n∑

j=1

∂L Rj

∂t

Ξj,i

Yi
. (38a)

The GE multiplier µi consists of two elements: a corrective term for market failures and a corrective

term for the suboptimality of the tax system. The corrective term for market failure (FXi−pi)/pi assesses

whether the marginal product of factor FXi differs from its private return pi, indicating the absence of

perfect competition. In a perfectly competitive setting, this term equals zero and (38a) simplifies to:

∀i ∈ {1, ..., n} : µi =
n∑

j=1

∂L Rj

∂t

Ξj,i

Yi
. (38b)

22In practice, the effects of tax reforms are uncertain. To take this into account, one can assume that the matrix Ξ of
inverse demand functions or that the PE effects ∂YR,PE

i /∂t of tax reforms are state-dependent. Proposition 2 is robust to such
uncertainty provided that for for each direction R(·), the direction RN (·), defined in (34), becomes state-dependent since the
γR
j ’s defined in (35) become state-dependent.
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The second term in (38a) corrects for the suboptimality of the tax system along the GE-replicating

directions, indicating whether the tax schedule could be improved along the GE-replicating directions of

tax reforms Rj , in which case we have ∂L Rj
/∂t ̸= 0 for at least one j ∈ {1, ..., n}. To understand

why this second term shows up, notice that tax reforms generate price changes, impacting taxpayers sim-

ilarly to reforms in the GE-replicating directions Rj(·). The term
∑n

j=1(∂L Rj
/∂t) (Ξj,i/Yi) therefore

captures that the price changes induced by reform in direction R(·) replicate the effects on taxpayers’

factor supply, consumption and utility of reforms in the GE-replicating directions Rj for j = 1, ..., n. To

compute the GE multipliers, one must solve (30) for the n GE-replicating directions of tax reforms Rj

(j = 1, ..., n) along with the n equations (38a) for all production factors. These computations yield the n

GE multipliers µ1, ..., µn as well as the effects of reforms along the GE-replicating directions ∂L Rj
/∂t.

We now explore the possibility of improving an optimal tax system through GE-replicating directions

of tax reforms. On the one hand, a tax system which is optimal along the GE-replicating directions Rj(·)
is characterized by ∂L Rj

/∂t = 0 for all j ∈ {1, ..., n}. Equation (38a) then simplifies to:

∀i ∈ {1, ..., n} µi =
FXi − pi

pi
. (38c)

Note that in such a case, the GE multipliers generalize to any kind of market imperfections the corrective

term described by Pigou (1920) in the presence of externalities. Finally, if the tax system is optimal

along GE-replicating directions and if there is perfect competition, Equation (38a) simplifies to:

∀i ∈ {1, ..., n} µi = 0. (38d)

However, there exist different reasons why reforms in the GE-replicating directions Rj(·) might not

be admissible (i.e. are not part of the available tax instruments), generically leading to ∂L Rj
/∂t ̸= 0

for some j ∈ {1, ..., n} at the optimum. First, the government may be unable to distinguish different

incomes from different factors. In such a case, we say that the tax system is not exhaustive. In Example

1 with labor and capital, the tax system is exhaustive. Conversely, in Example 2 with low and high skill

labor, the tax system is not exhaustive and the government cannot distinguish between different labor

income sources. Typical examples of these different labor types are Example 2 with low and high-skilled

labor or a case with routine, manual and conceptual labor. To grasp why the optimal tax system may

be suboptimal along GE-replicating tax directions in such cases, index (L, 1), ..., (L, q) these different

factors behind labor income where L encompasses all types of labor and i = 1, ..., q denotes the specific

types of labor. Denote yL = yL,1 + ... + yL,q the total individual labor income and TL(·) the labor

income tax schedule. According to (33), the directions of GE-replicating tax reforms for each type of

labor income are:

∀j ∈ {1, ..., q} : RL,j(y) = (1− T ′
L(yL)) yL,j . (39a)
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Since the government cannot distinguish the different types of labor income yL,j from the total labor

income yL, it is unable to reform the tax system in these GE-replicating directions. That is, the tax

system is typically suboptimal in GE-replicating directions, i.e. ∂L Rj
/∂t ̸= 0 for some j ∈ {1, ..., n}.

Second, the government may choose a tax system within a restricted set of functional forms, e.g. a

comprehensive tax schedule of the form y 7→ T (y) = T (y1+ ...+yn) or a schedular system of the form

y 7→ T (y) = T1(y1)+...+Tn(yn). Various reasons may explain this restricted choice including political

considerations, implementability constraints and legal arguments (Haig, 1921, Simons, 1938, Nielsen

and Sørensen, 1997, Boadway, 2004). In this case, restrictions on the structure of the tax system might

hinder its optimization along all GE-replicating directions. Then, even if the tax system is exhaustive, it

might be too restrictive to allow for improvements through tax reforms in the GE-replicating directions.

For instance, if the tax schedule is restricted to be comprehensive, the GE-replicating directions defined

by (33) are given by:

Rj(y) =
(
1− T ′(y1 + ...+ yn)

)
yj (39b)

which do not belong to the set of comprehensive tax schedules since yj is not specifically observed by

the tax authority. Consequently, the optimal comprehensive tax system is (generically) not optimal along

some of the GE-replicating directions. In Example 2 where the government cannot distinguish incomes

from high-skilled labor and from low-skilled labor incomes, the tax schedule must be comprehensive, so

the optimal tax schedule does not optimize specifically all GE-replicating directions. However, if the tax

schedule is restricted to be schedular, the GE-replicating directions are given by:

Rj(y) =
(
1− T ′

j(yj)
)
yj (39c)

and are part of a schedular tax system since yj is specifically observed by the tax authority. The optimal

schedular tax system is therefore optimal along all GE-replicating directions and GE multipliers are then

given by (38c). In Example 1, the government can apply different schedules to labor and capital incomes,

i.e. applies a schedular tax system. Note that when the tax system is schedular and the jth income is taxed

at a linear tax rate τj , the jth GE-replicating direction simplifies to a linear direction through:

Rj(y) = (1− τj) yj . (39d)

There are other situations where the government considers some restrictions in the tax system which

imply that the GE-replicating directions of tax reforms do not respect these constraints. For example, let

consider the case where the tax system is the sum of a comprehensive income tax schedule and income-

specific tax schedules, i.e., y 7→ T0(y1 + ... + yn) + T1(y1) + ... + Tn(yn). We call it the mixed tax
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system. From (33), the GE-replicating directions of tax reforms are then given by:

Rj(y) =
(
1− T ′

0(y1 + ....+ yn)− T ′
j(yj)

)
yj , (39e)

and imply changes in marginal tax rates that depend on both total income y1 + ... + yn and on the jth

specific income yj . However, under a mixed tax system, available tax instruments must be functions

either of each income yj or of total income y1 + ...yn. While
(
1− T ′

j(yj)
)

yj in (39e) is a part of

available tax instruments, −T ′
0(y1 + .... + yn) yj in (39e) is not, since it depends on both total income

y1 + ... + yn and jth income yj . Consequently, the optimal tax system in this case does not optimize

along GE-replicating directions of tax reforms. In other words, adding income-specific schedules to a

comprehensive income tax schedule does not ensure the optimality of the tax system with respect to

reforms in all GE-replicating directions.

Question 1 (Exhaustivity): Can the government distinguish incomes
generated from each factor of production?

Yes

No
Question 2 (Flexibility): Is the tax system flexible
enough to incorporate all GE-replicating reforms?

Yes No

Production efficiency does not applyProduction efficiency applies

Question 3 (Optimality): Is the tax system
optimal w.r.t. Rj(·)’s?

Yes No

µi =
FXi

−pi
pi

+
∑n

j=1
∂L Rj

∂t
Ξj,i

Yi
µi =

FXi
−pi

pi

Figure 2: A test on tax systems to determine GE-multipliers and assess production efficiency

In Figure 2, we outline the three key questions guiding the investigation into whether an optimal tax

schedule can be improved along the GE-replicating directions of a tax reform.

First, the exhaustivity question verifies whether the government can observe separately the incomes

from each production factor. If this this not possible, then the government lacks the information to

implement reforms in the GE-replicating direction specific to each factor and, typically, ∂L Rj
/∂t ̸= 0.
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Otherwise, if the system is exhaustive, the government may be constrained to adopt a specific functional

form that prevents him from reforming the tax system in the GE-replicating directions. In the latter case,

once again, typically, ∂L Rj
/∂t ̸= 0. Even if the tax system is exhaustive and flexible, the tax system

may not be optimal, which again imply ∂L Rj
/∂t ̸= 0. However, if the tax system is exhaustive, flexible

and optimal, one has ∂L Rj
/∂t = 0 for all GE- replicating directions and the GE multipliers are solely

given by market frictions through (38c).

We are now in position to discuss why, there are in the literature contrasting results about whether

GE price adjustments affects the optimal tax formula. In Diamond and Mirrlees (1971) and in Saez

and Zucman (2023), the optimal tax system is linear, i.e. y 7→ T (y) =
∑n

i=1 ti yi, schedular and

exhaustive. In such a linear tax system, there is a coincidence between GE-replicating directions, which

are Rj(y) = (1 − tj)yj according to (33), and the directions which change each linear tax rates. Their

optimal tax system is therefore also optimal along GE-replicating tax reforms. Since they also assume

perfect competition, the GE multipliers are given by (38d) in their context, i.e. they are nil. Hence, their

optimal tax formula does not depend on the parameters of the production function.

Saez (2004) proposes two models. In his long run model, agents select an occupation, corresponding

to a specific production factor, with a single income level. The tax schedule is then occupation-specific,

making it both exhaustive and not too constrained. Therefore, his optimal tax schedule is optimal along

GE-replicating tax reforms. Translated within our framework, due to perfect competition, this implies

that GE multipliers are nil in (38d), which explains that his optimal tax formula does not depend on the

production function parameters.

In Stiglitz (1982), Naito (1999, 2004), Jacobs (2015), Ales and Sleet (2016), Sachs et al. (2020)

or Schultz et al. (2023), the tax system is not exhaustive due to the existence of different imperfectly

substitutable types of labor that the government cannot distinguish. In the short-run model of Saez

(2004), the nonlinear tax schedule is also non-exhaustive. In our framework, this lack of exhaustivity

prevents the government from optimizing along GE-replicating directions, which are given by (39a).

Hence GE multipliers are typically different from zero, even under competition.

In Rothschild and Scheuer (2013, 2016) and Scheuer (2014) workers choose a sector in which to

work. They are endowed with different skills, which are perfect substitutes within each sector. In Roth-

schild and Scheuer (2013, 2016), the income tax is not sector-specific, leading to a lack of exhaustivity

in the tax system. This implies GE price adjustments that modify their optimal tax formulas. In Scheuer

(2014), two sectors co-exist: salary workers and entrepreneurs. Scheuer (2014) contrasts two cases.

Under comprehensive taxation, the optimal tax system does not optimize along GE-replicating reforms,

which are given by (39b), and the optimal tax formula is again affected by GE adjustments. Conversely,

if the government can tax differently salary workers and entrepreneurs, the optimal tax system optimizes
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along GE-replicating reforms described in (39c). As a result, the optimal tax system does not depend on

the parameters of the production sector.

III.4 Pareto-improving tax reforms

In this section, we provide conditions for the existence of Pareto-improving directions of tax reform

in the presence of GE adjustments. We show how to test whether a given tax system can be Pareto

improved and whether a given tax reform is Pareto-improving. As a preamble to this exercise, we must

establish the optimal tax system when it is exhaustive and there is no restriction on its form.

For this purpose, we denote WY the income space, ∂WY its smooth boundary. Let ∂Ŷi(y)/∂τj ,

∂Ŷi(y)/∂ρ and ĝ(y) denote the mean values of ∂Yi(w)/∂τj , ∂Yi(w)/∂ρ and g(w), respectively, among

taxpayers with earnings Y(w) = y. The following proposition, proved in Appendix B.5 characterizes

the optimal tax system when it is exhaustive and unrestricted.

Proposition 4. When the tax system is exhaustive and there is no restriction on its form, the optimal tax

system has to verify, ∀y ∈ WY :

[
1− ĝ(y)−

n∑

i=1

(Tyi(y) + µi)
∂Ŷi(y)

∂ρ

]
h(y) = −

n∑

j=1

∂

[
n∑

i=1
(Tyi(y) + µi)

∂Ŷi(y)

∂τj
h(y)

]

∂yj
, (40)

and the boundary conditions:

∀y ∈ ∂WY :
∑

1≤i,j≤n

(Tyi(y) + µi)
∂Ŷi(y)

∂τj
h(y)ϕj(y) = 0 (41)

where ϕ(y) = (ϕ1(y), ..., ϕn(y)) is the outward unit vector normal to the boundary at y, where the GE

multipliers are given by (38c). Under perfect competition, µi = 0, for i = 1, ..., n.

The Partial Differential Equation (40) is a divergence equation that must hold for any income y.

Equations (41) are boundary conditions that must hold at any income y ∈ WY in the boundary of

WY .23 The aforementioned tax formulas describe the optimal tax system which is unconstrained on its

form, across a large spectrum of economic environments (e.g., with any type of market failure or under

perfect competition, with a production factors which are imperfect substitutes or not). Since the system

is optimized and not restricted at all on its form, we have ∂L Rj
/∂t = 0 for all j, i.e. the tax system is

optimized along the GE-replicating directions defined in (33). Hence, according to (38a), GE multipliers

are given by (38c) to correct for market failures, if any. Under perfect competition, GE multipliers are

nil as given by (38d).

We now explore the identification of Pareto-improving directions of tax reforms, under the assump-

tion of perfect competition. To do so, based on (40), one needs to calculate revealed welfare weights, as
23Proposition 4 extends to a context with GE effects and market failures the optimal tax formulas of Mirrlees (1976), Golosov

et al. (2014), Spiritus et al. (2023), Boerma et al. (2022) and Golosov and Krasikov (2023).
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detailed in Appendix B.5. The literature on the inverse tax problem solves for these weights for which

an observed tax system satisfies the first-order conditions of an optimal tax problem, with one source of

income.24 With multiple incomes, as shown in Appendix B.5, revealed welfare weights are defined as:

g̃(y)
def≡ 1−

n∑

i=1

Tyi(y)
∂Ŷi(y)

∂ρ
+

1

h(y)

n∑

j=1

∂

[
n∑

i=1
Tyi(y)

∂Ŷi(y)

∂τj
h(y)

]

∂yj
(42)

The function h(·) denotes the joint income density. With real data, these revealed welfare weights can

be computed using (42) and estimations of compensated responses ∂Ŷi(y)/∂τj , of income responses

∂Ŷi(y)/∂ρ and income density h(y).

Lorenz and Sachs (2016), Hendren (2020), Bierbrauer et al. (2023) and Bergstrom and Dodds (2023)

show that negative revealed welfare weights indicate a Pareto inefficiency in the observed tax system,

when taxpayers earn a single income (n = 1). In a PE framework with multiple income sources, Spiritus

et al. (2023, Proposition 3) also show that a reform in the direction R(·) such that:25

R(y) = 0 if g̃(y) ≥ 0 R(y) ≥ 0 if g̃(y) < 0 (43)

and a small positive t is Pareto-improving at the PE. In Appendix B.6, we show that combining this result

with Proposition 2 yields the following proposition.

Proposition 5. Under perfect competition, if g̃(y) < 0 for some income bundles y within the interior of

the income bundle space, then there exist directions R(·) and RN (·) that verify Equations (34), (35) and

(43) such that a reform in the direction RN with a magnitude t > 0 is Pareto-improving at the GE.

According to Proposition 2, the GE-replicating reform RN (·) defined by Equations (34) and (35) and

a reform in the direction R(·) at the PE exerts the same impact on taxpayers’ factor supplies and utilities at

the GE. Since the former is Pareto-improving, the latter achieves Pareto improvement only if the change

in price does not reduce tax revenue. Rewriting tax liabilities as T (Y(w)) =
∑n

j=1 pj Xj(w)− C(w),

the difference between the effects on tax revenue of a reform in the direction RN (·) at the GE and a

reform in the direction R(·) at the PE is therefore equal to
∑n

j=1Xj dpj =
∑n

j=1 Yj dpj/pj . This

difference is zero under perfect competition. Note that the Pareto-improving tax reform described in

Proposition 5 may not be implementable if the tax schedule is non exhaustive or must have a constrained

form.

The following proposition, proofed in Appendix B.7 establishes that positive welfare weights are

both necessary and sufficient for the non-existence of a Pareto-improving direction.
24See, for instance, Bourguignon and Spadaro (2012), Bargain et al. (2014), Lorenz and Sachs (2016), Jacobs et al. (2017),

Hendren (2020), Bierbrauer et al. (2023) and Bergstrom and Dodds (2023).
25We obviously exclude a zero direction where R(y) = 0 for all y ∈ WY .
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Proposition 6. Under perfect competition, if g̃(y) ≥ 0 almost everywhere for income bundles y within

the interior of the income bundle space, then there is no Pareto-improving direction neither at the PE,

nor at the GE.

It is noteworthy that, as in Bierbrauer et al. (2023) with a single income, Proposition 6 does not

exclude the existence of a Pareto-improving reform which would be non-infinitesimal, i.e. a Pareto

improvement resulting from a large magnitude t.

III.5 Optimal schedular taxation

Proposition 4 characterizes the optimal tax function when the tax system is exhaustive and there is

no restriction on its form. In the presence of numerous income types and sources of income, the lack of

restrictions on the form of the tax system results in an optimal tax formula expressed as a partial differen-

tial equation. However, we argue that in reality, the tax code combines many functions (schedules), each

of them depending on a single argument (tax base). The imposition of such a realistic restriction on the

tax system takes our exploration a step further, revealing that with numerous types and income sources,

the optimal tax system must now conform to a system of ordinary differential equations, adopting the

ABC form introduced by Diamond (1998) and Saez (2001). This transformation not only enhances the

mathematical tractability of the model but, critically, introduces a more realistic framework leading to

more intuitive optimal tax formulas.

In this subsection, we investigate the case where the tax system is schedular,26 i.e. is the sum of n

income-specific functions Ti(·), so that:

T (y1, ..., yn) =
n∑

i=1

Ti(yi).

Moreover, we introduce the possibility that for some incomes, say those for i > n′, with 1 ≤ n′ ≤ n,

the corresponding tax schedule is linear i.e. Ti(yi) = ti yi where ti is a real number. Let then denote

hi(·) the density of the ith income and Hi(·) the corresponding CDF. For any variable Z(w) and for any

i = 0, ..., n, we denote Z(w)|Yi(w)=yi
the mean of Z(w) among types w for which Yi(w) = yi. The

notation εi(yi) refers to the compensated elasticity of the ith income with respect to its own marginal net-

of-tax rate. The corresponding uncompensated elasticity is denoted εui (yi). These means of elasticities

are calculated among w-taxpayers who earn their ith income equal to yi:

εi(yi)
def≡ 1− T ′

i (yi)

yi

∂Yi
∂τi

∣∣∣∣
Yi(w)=yi

and : εui (yi)
def≡ 1− T ′

i (yi)

yi

∂Y u
i

∂τi

∣∣∣∣
Yi(w)=yi

. (44)

We thus get the following Proposition, which is proved in Appendix B.8:
26Costa Rica, Denmark, Finland, Greece, Hungary, Iceland, Israel, Italy, Latvia, Lithuania, Netharlands, Norway, Poland

Slovenia, Spain, Sweden, Türkiye have schedular tax systems according to Hourani et al. (2023, Table A1).
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Proposition 7. When the tax system is exhaustive and schedular, the GE multipliers µ1, ..., µn are given

by (38c) at the optimum which has also to verify:

a) When the ith schedule is nonlinear, i.e. for i = 1, ..., n′:

T ′
i (yi) + µi

1− T ′
i (yi)

εi(yi) yi hi(yi) +
∑

1≤k≤n,k ̸=i

(
T ′
k(Yk(w)) + µk

) ∂Yk(w)

∂τi

∣∣∣∣
Yi(w)=yi

hi(yi)

=

∫ ∞

z=yi

{
1− g(w)|Yi(w)=z −

n∑

k=1

(
T ′
k(Yk(w)) + µk

) ∂Yk(w)

∂ρ

∣∣∣∣
Yi(w)=z

}
dHi(z). (45a)

b) When the ith schedule is linear, i.e. for i = n′ + 1, ..., n:

ti + µi

1− ti

∫

W
εui (w) Yi(w) dF (w) +

∫

W

n∑

k=1,k ̸=i

(
T ′
k(Yk(w)) + µk

) ∂Y u
k (w)

∂τi
dF (w)

=

∫

W
[1− g(w)]Yi(w) dF (w). (45b)

To grasp the economic intuitions behind (45a), consider a small increase in the ith marginal tax rate

around income yi and a uniform increase in tax liabilities for all taxpayers with their ith income above yi.

Given the other tax schedules, the tax schedule specific to the ith income is optimal only if these reforms

do not imply any first-order effects on the Lagrangian. In Equation (45a), the costs and gains resulting

from these reforms are equated.

A rise in the ith marginal tax rate around yi implies direct compensated responses, ∂Yi(w)/ ∂τi,

of the ith income which is proportional to the mean compensated elasticity εi of the ith income with

respect to its own marginal net-of-tax rate (as emphasized in Equation (44)). A first difference with

the one income ABC tax formula is that all behavioral responses have to be averaged across taxpayers

who earn the same ith income yi. Composition effects then take place (Jacquet and Lehmann, 2021). A

second difference arises due to the GE price adjustments. Under imperfect competition, the optimal tax

formulas include a corrective term which corresponds to the GE multipliers µ1, ..., µn given by (38c).

Under perfect competition, these corrective terms are nil, as in Saez (2001). This arises from the fact that

according to (39c), the GE-replicating directions Rj(·) are part of a schedular tax system . Consequently,

an optimal schedular tax system optimizes along all GE-replicating directions, i.e. ∂L Rj
/∂t = 0. The

GE multipliers are then given by (38c) under imperfect competition and are nil under perfect competition,

as established in Proposition 3. A third difference occurs because a rise in the ith marginal tax rate triggers

(compensated) cross-base responses of all other tax bases ∂Yk(w)/∂τi for k ∈ {1, ..., n} \ {i} (see the

second term of the left-hand side of (45a)). For example, taxpayers can report some of their ith income

as kth income, with k ̸= i, when the ith marginal tax rate rises (i.e. the ith marginal net of tax rate τi

declines), a phenomenon known as income shifting. The compensated increase in the kth income due to

income-shifting, i.e. ∂Yk(w)/∂τi < 0, can partly offset the loss due to the compensated responses of

26



the ith income. Conversely, positive cross base responses (∂Yk/∂τi > 0), as in the two-period example

of Section A.2, can exacerbate the loss due to compensated responses of the ith income.

As usual, a rise in the tax liability above income yi implies mechanical gains in terms of tax revenue

and mechanical welfare losses that are emphasized by the aggregation of 1 − g(w)|Yi(w)=z for all z ≥
yi in the right-hand side of (45a). It also creates income effects ∂yi(w)/∂ρ in the right-hand side of

(45a). Again, compared to the one income optimal income tax formula, welfare weights and incomes

responses have first to be aggregated for all income earners with income above y. Second, if competition

is imperfect, income responses may be attenuated or exacerbated by GE price adjustments. Third, income

response matter for all income sources yk for k = 1, ..., n.

From (45b), we see that, when the tax schedule on the ith income is restricted to be linear, with no

restriction on the other tax schedules, similar intuitions than under nonlinear tax schedule apply. There

are however several particularities. First, under a linear tax schedule, income effects and compensated

effects can be combined and are equivalent to uncompensated responses, as can been verified using the

Slutsky Equation (20). Replacing the sum of income and compensated effects by the uncompensated

ones implies fewer terms in the right-hand side of (45b) compared to (45a). Second, in the optimal

linear tax formula (45b), integrals emphasize that means of sufficient statistics over the whole population

need to be estimated instead of means of sufficient statistics at each income level. Third, as expected

from the optimal linear tax formula (see e.g. Piketty and Saez (2013)), the mean of welfare weights and

uncompensated elasticities are income-weighted. Conversely, the mean of uncompensated cross-base

responses ∂Y u
k (w)/∂τi for k ̸= i are not income-weighted since they are expressed in derivatives rather

than elasticities.

Finally, we provide an order of magnitude of how important GE effects are from a back-to-the en-

velope calculation. For this exercise, assume there are no cross-base or income responses and fix the

right-hand sides of (45a)-(45b). For simplicity, assume there is neither cross base response nor income

responses and fix the right-hand sides of (45a)-(45b). Let T ′,PE
i denote the optimal marginal tax rate

from the right-hand sides of (45a)-(45b), when the GE multipliers are erroneously ignored. The opti-

mal marginal tax rates that take into account GE price adjustments are related to T ′,PE
i and to the GE

multipliers by:27

T ′
i = T ′,PE

i − µi (1− T ′,PE
i )

For example, if T ′,PE
i = 0, the optimal marginal tax rate is equal to minus the GE multipliers. In the

absence of a redistributive motive, the marginal tax rate deviates from zero only to correct for market

27Put differently T ′
i , T ′,PE

i and µi are related by:

T ′
i + µi

1− T ′
i

=
T ′,PE
i

1− T ′,PE
i

where these ratios are equal to the right-hand side of (45a) or (45b).
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inefficiencies in a Pigou (1920) way. Marginal tax rates then vary one to one with the value of the GE

multiplier. However, if the redistributive motive is high enough (which implies larger T ′,PE
i ), the effect

of the GE multiplier on the optimal marginal tax rate is of a smaller order of magnitude. To illustrate

this point, Table 1 shows that the higher the marginal tax rate at the PE (i.e. the higher the redistributive

motive) in the first column, the lower the effect of GE multiplier (in the top row) on optimal tax rates.

µi

-0.10 -0.05 0 0.05 0.10

T ′,PE
i

20% 28% 24% 20% 16% 12%
40% 46% 43% 40% 37% 34%
60% 64% 62% 60% 58% 56%
80% 82% 81% 80% 79% 78%

Table 1: How much GE multipliers matter?

III.6 Optimal Comprehensive Taxation

Building upon Haig (1921) and Simons (1938), we now turn our attention to comprehensive tax

schedules, wherein the tax function depends on the sum of all incomes, so-called taxable income. For-

mally, the tax schedule takes the form

T (y) = T0 (y1 + ...+ yn)

where y0
def≡ y1+ ...+yn and Y0(w) = Y1(w)+ ...+Yn(w). Tax systems of countries such as Australia,

Canada, Chile, Luxembourg, New Zealand, Switzerland, the United Kingdom and the United States can

be viewed as close approximations to comprehensive tax systems, see Hourani et al. (2023, Table A1).28

We denote h0(·) the density of taxable income and H0(·) the associated CDF. Since marginal tax rate

on all incomes is equal to T ′
0(y1+ ..., yn), the compensated responses with respect to the marginal net of

tax rate is given by:

∀i ∈ {0, ..., n} ∂Yi
∂τ0

=
n∑

j=1

∂Yi(w)

∂τj
, (46)

the compensated elasticity of taxable income is:

ε0(y0) =
1− T ′

0(y0)

y0

∑

1≤i,j≤n

∂Yi(w)

∂τj

∣∣∣∣
Y0(w)=y0

(47)

which is positive,29 and the income response of taxable income are given by:

∂Y0(y0)

∂ρ
=

n∑

k=1

∂Yk(w)

∂ρ

∣∣∣∣
Y0(w)=y0

(48)

28In the United Kingdom, income is taxed comprehensively, yet distinct tax rates are applied to capital gains and dividend
income. Different allowances exist for savings, dividends, capital gains, and property. Similarly, the United States taxes income
comprehensively but employs varied tax rates for long-term capital gains and certain types of dividends.

29Since the matrix
[
∂Yi(w)

∂τj

]
i,j

is positive definite, taxable income’s compensated elasticity is positive.
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This elasticity depends on every compensated responses ∂Yi(w)/∂τj to changes in every net-of-marginal

tax rate τj for i, j ∈ {1, ..., n}. The following proposition, which is proved in Appendix B.9, character-

izes the optimal comprehensive income tax schedule.

Proposition 8. When the tax system is comprehensive, the GE multipliers µ1, ..., µn are given by (38a)

at the optimum which has also to verify:

T ′
0(y0)

1− T ′
0(y0)

ε0(y0) y0 h0(y0) +
∑

1≤k≤n

µk
∂Yk(w)

∂τ0

∣∣∣∣
Y0(w)=yi

h0(y0) (49)

=

∫ ∞

z=y0

{
1− g(w)|Y0(w)=z − T ′

0(z)
∂Y0(z)

∂ρ
−

n∑

k=1

µk
∂Yk(w)

∂ρ

∣∣∣∣
Y0(w)=z

}
dH0(z).

This optimal income tax formula differs from the usual ABC formula only by the presence of GE

multipliers. Under a comprehensive tax system, the GE-replicating directions of tax reforms are given

by (39b) and do not belong to the set of comprehensive tax schedules. Hence the optimal comprehensive

tax function does not optimize along all GE-replicating directions. This is due to the non-exhaustiveness

nature of the tax system, where only the sum of all income y0 determines tax liabilities. Hence the

optimal tax system has to solve (38) for all k = 1, ..., n together with (49) for all income levels.

To better understand how GE price adjustments affect the optimal comprehensive tax schedule, we

consider the simple case with two production factors n = 2 and perfect competition. In this case, the

GE-replicating directions (39b) simplify to R1(y1, y2) = (1 − T ′
0(y1 + y2)) y1 and R2(y1, y2) = (1 −

T ′
0(y1+y2)) y2. The optimal comprehensive tax system optimizes along all comprehensive tax directions,

including (1 − T ′
0(y1 + y2)) (y1 + y2) = R1(y1, y2) +R2(y1, y2), but does (generically) not optimize

along R1 or R2 separately. Optimizing along (1 − T ′
0(y1 + y2)) (y1 + y2) = R1(y1, y2) +R2(y1, y2)

leads to ∂L R1
/∂t + ∂L R2

/∂t = 0 by Gateaux differentiability of the Lagrangian with respect to the

tax reforms. Denoting σ the elasticity of substitution between the two production factors, one obtains:

µ1 = − 1

σ Y1

∂L R1

∂t
µ2 = − 1

σ Y2

∂L R2

∂t
(50)

These two GE multipliers have opposite signs. Let Yk(y0) denote the mean kth income earned by tax-

payers with taxable income y0. Define:

ε0k(y0)
def≡ 1− T ′

0(y0)

Yk(y0)

∂Yk(w)

∂τ0

∣∣∣∣
Y0(w)=y0

as the elasticity of the mean of the kth income, with respect to the net-of-marginal tax rate of taxable

income, among taxpayers earning taxable income y0. Fixing the right-hand side of (49), Equation (50)

indicates that GE price adjustments affect the optimal marginal tax rate at taxable income y0 in proportion

to:

∑

1≤k≤n

µk
∂Yk(w)

∂τ0

∣∣∣∣
Y0(w)=yi

=
1

σ (1− T ′
0(y0))

∂L R1

∂t

[
Y2(y0)

Y2
ε02(y0)−

Y1(y0)

Y1
ε01(y0)

]
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The impact of GE adjustments on the optimal marginal tax rates at taxable income y0 relies on the sign

of ∂L R1
/∂t which is the same across the taxable income distribution. Conversely, the term in square

brackets may vary with taxable income. This term compares the two elasticities with respect to the net-

of-marginal tax rate scaled by the ratios of average kth income at taxable income y0 over aggregate kth

income Yk. In particular, if the two elasticities are identical, as is the case for instance in Rothschild and

Scheuer (2013) or in Sachs et al. (2020), then the impact of GE price adjustments on the optimal marginal

tax rates may be positive at low taxable income levels y0 and negative at high taxable income levels, as

in Figure 2 of Rothschild and Scheuer (2013) and Figure 4 of Sachs et al. (2020). In our framework, this

outcome occurs when ∂L R1
/∂t > 0 and if taxpayers with low (high) taxable income y0 earn relatively

more (less) income 2 and relatively less (more) income 1 than in the overall population.

IV Production policies

In this section, we investigate the effects of production policies. Our analysis of production policy

changes extends to any shock that modifies the production set like technological shocks or expanded

trade opportunities. First, we determine how production policy reforms affect the economy and when

they are desirable. To achieve this, we use a reduced-form description of the production sector employing

inverse demand functions Pi(·). Second, we provide different examples with specific microfoundations

tailored to our reduced-form for the production sector. With these examples, we illustrate how the use of

a reduced-form enables us to derive results that cover a large set of production policies. This includes,

but is not limited to, the taxation of intermediate goods (such as robot and AI taxation), public pro-

duction, commodity taxation, competition policies, trade policies and modifications in business-focused

environmental regulations.

IV.1 The effects of production policy reforms

Production policy reforms impact the economy exclusively through the production sector thereby,

affecting the taxpayers indirectly through the induced changes in prices. These price changes lead tax-

payers to modify their incomes and to experience a change in welfare that are respectively given by (see

Appendix B.1):

∂Yi(w)

∂αℓ
=

n∑

j=1

∂Yi(w)

∂log pj

∂log pj
∂αℓ

(51a)

1

λ

∂Φ (U(w);w)

∂αℓ
=




n∑

j=1

(
1− Tyj (Y(w))

)
Yj(w)

∂log pj
∂αℓ


 g(w), (51b)

for each component αℓ of the vector of production policies. Equation (51a) is obtained by differentiating

taxpayers’ first-order conditions (5), while Equation (51b) is obtained by applying the envelope theorem

on (3).
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The impact of production policies on the Lagrangian is thus equal to the sum, for each factor, of the

product of the log change in price induced by the production policy reform and the impact of log price

change on the Lagrangian.

∂L

∂αℓ
=

n∑

j=1

∂L

∂log pj

∂log pj
∂αℓ

∀ℓ ∈ {1, ..., L} (51c)

To compute the GE effects of production policies on prices ∂log pj/∂αℓ, we combine the log differ-

entiation of inverse demand equations (6) with respect to factor supplies Xi and production policies α

using (24a) and the log differentiation of the factor supplies with respect to price using (24b) leads to the

following lemma (see Figure 1).

Lemma 5. After a production policy reform, the vectors ∂ log p/∂αℓ of log-price changes at the GE

are:

∀ℓ ∈ {1, ..., L} :
∂log p

∂αℓ
= (In − Ξ · Γ)−1 · ∂logP

∂αℓ
(52)

where ∂ logP/∂αℓ is the vector for which the ith term, ∂Pi/∂αℓ, describes how the ℓth production

policy reform modifies the ith price absent any change in factor supplies.

Differentiating both sides of (7) with respect to the strength of the ℓth production policies leads to:

∀ℓ ∈ {1, ..., L} : Fαℓ
=

n∑

j=1

Yj
∂logPj

∂αℓ
. (53)

In the following proposition, which is proved in Appendix C.1, we present the impact on the La-

grangian of any production policy reform.

Proposition 9. The effects of production policies on the Lagrangian are given by:

∀ℓ ∈ {1, ..., L} :
∂L

∂αℓ
= Fαℓ

+
n∑

j=1

∂L Rj

∂t

∂logPj

∂αℓ
. (54)

Proposition 9 characterizes the social desirability of any production policy reform or technological

shock, dαℓ. The effect of a production policy reform on the Lagrangian can be decomposed into two

components. Firstly, there is a direct mechanical effect of the production policy reform itself, absent any

behavioral responses. According to (53), this mechanical effect coincides with the effect of the produc-

tion policy reform on the production function, capturing its impact on production efficiency. Secondly,

the production policy reform induces price changes ∂logPj/∂αℓ, which trigger behavioral responses

and GE effects. These changes in factor prices generate distributional consequences, as captured by the

second term of (54), which measures the pre-distributive effect of production policy reforms (or techno-

logical shocks). When the production policies αℓ, for ℓ = 1, ..., L are optimal, the net impact in terms

of efficiency and pre-distribution is null, resulting in Equation (54) being equal to zero. More generally,
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the social desirability of any production policy reform can be tested using Equation (54). First, when

the tax system is exhaustive and not overly restricted, its optimality along the GE-replicating directions

Rj(·)– i.e. ∂L Rj
/∂t = 0 for all j = 1, ..., n– implies that the desirability of any policy reform depends

only on the sign of the mechanical efficiency effect Fαℓ
(·). Second, when the tax system is either not

exhaustive or too restricted, assessing the desirability of reforms or shocks requires evaluating both the

mechanical efficiency effect and the pre-distributive effect, ie. both terms in the right-hand side of (54).

This requires to determine the magnitude of both the mechanical effect of the production policy and its

pre-distributive effect. To compute ∂L Rj
/∂t, one must solve (30) for the n GE-replicating directions of

tax reforms Rj (j = 1, ..., n) along with the n GE-multiplier equations (38a) for all production factors.

Equation (54) highlights that a production policy reform aimed at enhancing production efficiency

(i.e. Fαℓ
(·) > 0) may be undermined by too negative predistributive effects, resulting in a negative right-

hand side. In an economy where the tax system is not exhaustive or too restricted, simply labeling a

production policy reform as efficiency-improving is insufficient; it is also crucial to ensure that negative

pre-distributive effects do not offset these efficiency gains.

We now consider the effect of a multidimensional production policy reform, denoted t 7→ (α1(t),

..., αL(t)), where t represents the magnitude of the production policy reform and the αℓ(·) are continu-

ously differentiable functions. Following (7), we define production efficient policy reforms as:

Definition 4. The (multidimensional) production policy reform (α1(t), ..., αL(t)) is production efficient

if:
L∑

ℓ=1

Fαℓ
α′
ℓ(t) > 0.

In the following proposition, as demonstrated in Appendix C.2, we establish that for any produc-

tion efficient policy reform, there exists a tax reform direction denoted RN , such that combining the

production policy reform with a tax reform in the direction RN is Pareto-improving.

Proposition 10. Generalized Production Efficiency Principle

Combining a production efficient policy reform (α1(t), . . . , αL(t)) with a tax reform in the direction

RN (·) =∑ γj Rj(·) such that:

∀j ∈ {1, . . . , n} : γj = −
L∑

ℓ=1

∂ logPj

∂αℓ
α′
ℓ(t) (55)

is Pareto-improving.

To make everyone better off without deteriorating public finances, it is enough to combine a produc-

tion efficient policy with the tax reforms outlined in Proposition 10. A production efficient policy reform

triggers adjustments in prices, which in turn, modify taxpayers’ factor supplies and utilities. However,
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Proposition 2 states that these effects on taxpayers’ factor supplies and utilities can be nullified by us-

ing the adequate combination of GE-replicating tax reforms with directions Rj , for j = 1, ..., n. The

details of this adequate combination are provided in Proposition 10 and Equation (55). Consequently,

combining the production efficient policy reform α1(·), ...αL(·) with the tax reform
∑n

j=1 γj Rj re-

sults in no impact on taxpayers’ factor supplies and utility. These combined production policy and

tax reforms affect each price by
∑L

ℓ=1(∂Pj/∂αℓ) α′
ℓ(t). As a result, tax revenues are modified by

∑n
j=1

∑L
ℓ=1Xj(∂Pj/∂αℓ)α

′
ℓ(t), which is equal to

∑L
ℓ=1Fαℓ

α′
ℓ(t), based on (53). Given the efficiency

of the production policy reform, its combination with the aforementioned tax reform yields a Pareto

improvement.

According to Proposition 10, the choice of production policies should be solely driven by efficiency

considerations if all GE-replicating directions Rj(·) of tax reforms are feasible. This is what we call

the “production efficiency principle”. Another way of putting it is that we do not need pre-distribution

through production policy when the tax system is exhaustive enough to incorporates all its GE-replicating

reforms with directions Rj(·). In this case, redistribution should only take place thanks to taxation

and only efficiency concerns should guide the design of production policies. The production efficiency

principle can be regarded as some form of “Tinbergen principle”: production policies should not be

concerned with redistribution, as that role falls within tax policy. The potentially detrimental effects of

production efficient policy reforms on certain categories of taxpayers can be offset by tax reforms in the

GE-replicating directions when they are admissible. Proposition 10 thus generalizes, to a context with

nonlinear taxes, the production efficiency theorem of Diamond and Mirrlees (1971).

However, as previously discussed, there are various reasons why reforms in the GE-replicating di-

rections Rj(·) might not belong to set of available tax instruments, generically leading to ∂L Rj
/∂t ̸= 0

for some j ∈ {1, ..., n}. The tax schedule may not be exhaustive (see Question 1 in Figure 2) or the

tax system may be too restricted (see Question 1 in Figure 2). Note that Proposition 10 does not require

the tax system to be optimal along all GE-replicating directions, i.e. ∂L Rj
/∂t = for j = 1, ..., n,

(see Question 3 in Figure 2). It requires that the government is able to reform the tax system in all

GE-replicating directions. When the tax system prevents production efficiency, Proposition 9 describes

how to optimally deviate from the production efficiency principle. In addition to their efficiency effects

Fαℓ
(·), production policies, by generating price changes, induce effects on tax revenue and taxpayer

welfare – i.e. pre-distributive effects – that replicate the effects of tax reforms in the GE-replicating

directions, as described in Equation (54).

Our analysis extends to the welfare compensation problem, aimed at designing tax reforms that offset

the welfare losses, induced by economic disruptions, by redistributing the winners’ gains. To address

this, reinterpret changes in α as exogenous technological shocks instead of production policy reforms.
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According to Proposition 10, if the tax system is exhaustive and flexible enough to enable reforms of

the tax system along all GE-replicating directions, the welfare effects of a technological shocks can be

nullified using Equation (55) without implying any changes in factor supplies. In such a case the Kaldor

(1939), Hicks (1939, 1940) logic applies. If otherwise the tax system can not be reformed in some of

GE replicating directions, the compensation problem is more complex and implies distortions in factor

supplies, as in Schultz et al. (2023). Solving the compensation problem under such constraints falls

beyond the scope of the present paper.

IV.2 Examples of production policies

We derive Proposition 10 by describing the production sector only in terms of inverse demand func-

tions Pi(·). Relying on the simplicity of these reduced-forms allows us to demonstrate Proposition 10

without any precise specification of the production sector. However, this simplicity hides the large set

of problems that can be described by these reduced-forms. To address this concern, we now describe

how our reduced-form description of the production sector thoroughly incorporates examples with ex-

plicit micro-foundations. In all our examples, we rely on fewer structural assumptions compared to those

commonly found in the existing literature that studies similar scenarios.

To do this, we focus on economies with many intermediate goods and sectors and adopt the fol-

lowing notations. There are one final good and S intermediate goods therefore, S + 1 sectors, indexed

by s = 0, ..., S. Within each sector s, there exist Ns firms. In sector s > 0, firm φ = 1, ..., Ns

produces the sth intermediate good, employing factors Xφ,s def≡ (Xφ,s
1 , ...,Xφ,s

n ) and goods zφ,s
def≡

(zφ,s0 , ..., zφ,ss−1, z
φ,s
s+1, ..., z

φ,s
S ) with the production function Fφ,s (Xφ,s, zφ,s). Firm φ = 1, ..., N0 in

sector s = 0 produces the final good using factors Xφ,0 def≡
(
Xφ,0
1 , ...,Xφ,0

n

)
and goods zφ,0

def≡
(zφ,01 , ..., zφ,0S ) with the production function Fφ,0

(Xφ,0, zφ,0
)
. The production functions are differ-

entiable with non-negative partial derivatives and well-behaved. The market clearing condition in the

intermediate goods sector s can be written as:

∀s ∈ {1, ..., S} :

Ns∑

φ=1

Fφ,s (Xφ,s, zφ,s) =

S∑

s′=0
s′ ̸=s

Ns′∑

φ=1

zφ,s
′

s (56)

i.e., the total production of firms in sector s on the left-hand side is equal to the sum of the demands for

good s by firms in all sectors s′ other than s on the RHS. The market clearing condition for the final

goods is:
N0∑

φ=1

Fφ,0
(Xφ,0, zφ,0

)
=

S∑

s=1

Ns∑

φ=1

zφ,s0 +

∫

W
C(w) dF (w) + E. (57)

It equalizes the total production of firms in sector s = 0 in the left-hand side to the demands for the

final good s = 0 by intermediate goods producers, taxpayers and the government, in the right-hand side.
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Finally, the market clearing condition for factor i = 1, ..., n can be expressed as:

∀i ∈ {1, ..., n} : Xi =
S∑

s=0

Ns∑

φ=1

Xφ,s
i (58)

i.e., the total supply of the ith factor by taxpayers in the left-hand side is equal to the sum of demands of

factors by all firms in all sectors in the right-hand side.

IV.2.a Taxation of intermediate goods and taxing robots and AI

Production policies can be taxes on intermediate goods. Consider that all firms operate under constant

or decreasing returns to scale, and intermediate goods are subject to the sector-specific ad-valorem tax

rates αs, for s = 1, ..., S, with the normalization α0 = 0 for the final good. Let qs denote the purchasing

price of good s, with the normalization q0 = 1 for the final good. In this scenario, firm φ = 1, ..., Ns in

sector s = 0, ..., S solves:

πφ,s def≡ max
Xφ,s,zφ,s

qs(1− αs) Fφ,s (Xφ,s, zφ,s)−
n∑

i=1

pi Xφ,s
i −

S∑

s′=0
s′ ̸=s

qs′ z
φ,s
s′ , (59)

where πφ,s denotes the profit of firm φ in sector s. Since firms operate under perfect competition, profit

πφ,s is positive if the production function of the firm φ in sector s has decreasing returns to scale. Let

Xn+1(w) denote the exogenous share of firms’ profits earned by w-taxpayers and pn+1Xn+1(w) the

profits earned by w-taxpayers. Program (59) leads to the following conditions:

∀i ∈ {1, ..., n} : pi = qs(1− αs)Fφ,s
Xi

and ∀s′ ̸= s : qs′ = qs(1− αs)Fφ,s
zs′

. (60)

The competitive allocation of the production resources is a vector (Xφ,s, zφ,s) for all firms φ =

1, ..., Ns in sector s = 0, ..., S, a vector of intermediate goods’ prices (q1, ..., qS) (with normalization

q0 = 1) and a vector of factor prices (p1, ..., pn). These vectors must verify the market clearing conditions

(56) and (58) as well as the optimality conditions (60), for all firms, in all sectors.

We show, in Appendix C.3, that the competitive allocation of production resources coincides with

the choice of an hypothetical “production coordinator”. This reformulation will prove useful to easily

retrieve the reduced-forms F(·) and the inverse demand equations Pi(·). The production coordinator’s

objective is the total production of the final good net of the final good demands from the firms pro-

ducing intermediate goods. According to (57), this coincides with the total consumption of final good

by taxpayers and the government. The production coordinator’s program has to verify resource con-

straints on production factors (58) and on intermediate goods (56). Crucially, instead of Equation (56),

the production coordinator considers a reformulation of the resource constraints on intermediate goods.

This reformulation acknowledges that the government collects a fraction αs of the production of the sth

intermediate good. The program for the production coordinator is:
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max
{Xφ,s,zφ,s}φ=1,..,Ns

s=0,...,S

N0∑

φ=1

Fφ,0
(Xφ,0, zφ,0

)
−

S∑

s=1

Ns∑

φ=1

zφ,s0 (61a)

∀i ∈ {1, ..., n} : Xi =
S∑

s=0

Ns∑

φ=1

Xφ,s
i (61b)

∀s ∈ {1, ..., S} : αs Zs + (1− αs)

Ns∑

φ=1

Fφ,s (Xφ,s, zφ,s) =

S∑

s′=0
s′ ̸=s

Ns′∑

φ=1

zφ,s
′

s (61c)

where:

∀s ∈ {1, ..., S} : Zs
def≡

Ns∑

φ=1

Fφ,s (Xφ,s, zφ,s) (61d)

is taken as given by the production coordinator. Importantly, the combination of (61c) and (61d) recovers

the resource constraint (56) on the intermediate goods s = 1, ..., S. With this reformulation, the produc-

tion coordinator is induced to mimic the firms’ behavior in the competitive allocation when there exists

a wedge αs between the purchasing and the selling price of the sth intermediate good. Let pi denote

the Lagrange multiplier associated with (61b) and let qs represent the Lagrange multiplier associated

with (61c) in the coordinator’s program. The first-order conditions with respect to Xφ,s
i and zφ,ss′ associ-

ated to (61a)-(61c) then coincide with the first-order conditions (60) in the competitive scenario. Since

the allocation of production resources chosen by the production coordinator verifies the market clearing

conditions (56) and (58), the production coordinator’s chosen allocation aligns with the competitive al-

location of production resources. By reformulating the competitive allocation of production resources

through the program of this hypothetical production coordinator, we can directly retrieve the inverse de-

mand functions Pi(·) (in (6)) and the production function F(·). For each value of (X1, ...,Xn) of factor

supplies, of intermediate good tax rates (α1, ..., αS) and intermediate good tax revenues (Z1, ..., ZS),

the production function F(·) is defined as the value of the program (61a)-(61c), and the inverse demands

Pi(·) are defined as the Lagrange multipliers associated to the factor constraints (61b) in the Program

(61a)-(61c).30

The most efficient allocation of production resources is obtained when the total production of the

final good net of its consumption by intermediate producers is maximal, given the resources constraints
30In other words, the allocation of production resources solves a fixed point problem, since Program (61) takes Zs for

s = 1, ..., S as given and the solution to this program in turn determines the Zs for s = 1, ..., S.
In appendix C.3, we show that the sum of income factors

∑n
i=1 pi Xi, profits

∑S
s=0

∑Ns
φ=1 π

φ,s and revenue

from intermediate good taxation
∑S

s=1

∑Ns′
φ=1 αsqsFφ,s (Xφ,s, zφ,s) is equal to the total production of the final good∑N0

φ=1 Fφ,0
(Xφ,0, zφ,0

)
net of the consumption of the final good by intermediate good producers, i.e.

∑S
s=1

∑Ns
φ=1 z

φ,s
0 , as

expected from the Walras Law.
To retrieve the national accounting equation (7), we normalize Xn+1 =

∫
W Xn+1(w)dF (w) = 1, so that the aggregate

profits earned by all taxpayers are Yn+1 = pn+1Xn+1 = pn+1. Symmetrically, we denote Xn+2(w) = 1 the allocation of
tax revenue from intermediate good taxation and pn+2, the Lagrange multiplier associated with (61b), the total tax revenue
from the taxation of intermediate goods. So doing, the production function coincides with the value function of the production
coordinator’s Program (61a)-(61d) and verifies the accounting equation (7), provided that the sum on the right-hand side of (7)
runs for i from 1 to n+ 2 instead of n.
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on intermediate goods (56) and on the production factors (58). The program defining the most efficient

allocation of production resources therefore coincides with (61) whenever α1 = ... = αS = 0. Thus,

production efficiency is achieved if intermediate goods are not taxed, which is an important implication

of Diamond and Mirrlees (1971)’s production efficiency theorem.

The model of Diamond and Mirrlees (1971) is a sub-case of the present example where all production

functions have constant returns to scale and where taxation is assumed to be exhaustive, schedular and

linear. In this case, the optimal tax system is also optimal along all GE-replicating directions (which

are here given by (39d)). Consequently, our Proposition 10 implies that not taxing intermediate goods

is Pareto-optimal. Extending this framework to exhaustive and nonlinear taxation, our Proposition 10

states that the desirability of not taxing intermediate goods does not require a fully optimal tax system,

but rather one that is optimal only along the n GE-replicating directions.

Another sub-case of our example occurs where some production functions exhibit decreasing returns

to scale and taxation is exhaustive, schedular and linear, as in Dasgupta and Stiglitz (1971, 1972). In

such a case, for the tax system to be optimal along all GE-replicating directions, the government has

to be free to tax profits. This requirement, on top of the exhaustivity and unrestrictiveness of the tax

system, ensures the tax system to be optimal along the n + 1 GE-replicating directions (including the

one corresponding to the n+ 1th entrepreneurial factor), thereby ensuring that Proposition 10 applies.

This formulation of our framework also allows us to address the question of taxing robots and AI,

as Koizumi (2020), Guerreiro et al. (2021), Costinot and Werning (2022) and Thuemmel (2023) do, by

simply considering them as particular intermediate goods. If the tax function is exhaustive, encompassing

GE-replicating directions, and taxation is optimized along these directions, it is optimal not to tax robots.

However, the literature on robot taxation assumes a tax authority unable to distinguish between various

(imperfectly substitutable) types of labor, such as routine and non-routine tasks. The assumption of

the non-exhaustiveness of the tax function implies that the tax system is not optimized along its GE-

replicating directions. In such an environment, it becomes optimal to tax robots.31

IV.2.b Public production

Consider the government owns the public firm φ⋆ in sector s⋆. Within this framework, the production

policies are the public firm’s demand of factors and the demand of goods, i.e. α
def≡ (Xφ⋆,s⋆ , zφ

⋆,s⋆),

instead of tax rates on intermediate goods, as in the previous example. The private firms solve (59)

and their behaviors are described by (60). Therefore, the competitive allocation of production resources
31Through GE price adjustments, the taxation of robots, assumed to substitute routine labor, indirectly reduces the wage

gap between routine and non-routine tasks. This leads to an increase in the wage rate for routine labor, exclusively earned by
routine workers. The optimal robot tax balances the equity gains from wage compression with the efficiency losses stemming
from distorted production decisions.
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coincides with the solution of our production coordinator’s program, which is now:

max
{Xφ,s,zφ,s}φ=1,..,Ns,(φ,s)̸=(φ⋆,s⋆)

s=0,...,S

N0∑

φ=1

Fφ,0
(Xφ,0, zφ,0

)
−

S∑

s=1

Ns∑

φ=1

zφ,s0 (62a)

∀i ∈ {1, ..., n} : Xi =
S∑

s=0

Ns∑

φ=1

Xφ,s
i (62b)

∀s ∈ {1, ..., S} :

Ns∑

φ=1

Fφ,s (Xφ,s, zφ,s) =
S∑

s′=0
s′ ̸=s

Ns′∑

φ=1

zφ,s
′

s . (62c)

instead of (61a)-(61c). Again, for each vector of factor supply (X1, ...,Xn) and each vector of production

policy, (Xφ⋆,s⋆ , zφ
⋆,s⋆), the inverse demands Pi(·) are defined as the Lagrange multipliers associated

to constraints (62b) and the production function F(·) is the value function associated to program (62a)-

(62c).

According to Proposition 10, if the tax system can be reformed along all the GE-replicating directions

Rj(·) (for j = 1, ..., n+ 1), the government sets the production plan (Xφ⋆,s⋆ , zφ
⋆,s⋆) of the public firm

φ⋆ in sector s⋆ to maximize the total production of the final good (minus its consumption by producers

of intermediate goods), as detailed in (62a). This amounts to solving program (62a)-(62c) with respect

to the production plan of private firms (as in (62a)-(62c)) and of the public firm φ⋆ in sector s⋆. In such

a case, private and public firms face the same first-order conditions:

∀i ∈ {1, ..., n} : pi = qs Fφ,s
Xi

and ∀s′ ̸= s : qs′ = qs Fφ,s
zs′

.

Put differently, whenever the tax system can be modified along all GE replicating directions, Proposition

10 implies that the public firms should face the same factor prices as the private firms. We retrieve the

result of Diamond and Mirrlees (1971). This has the implication, exploited by Little and Mirrlees (1974),

that in evaluating public projects prices used to value factors purchased (or sold) in the market by the

public sector should be producer prices. Again, we do not need to assume optimality of the tax schedule,

i.e. optimality with respect to all directions R(·). We only need that the tax system can be reformed

along the n GE-replicating directions Rj(·) for j = 1, ..., n if there is no profit and and along Rj(·) for

j = 1, ..., n+ 1 in the case of profits. However, as soon as the tax system can not be reformed along the

GE-replicating directions Rj , it is desirable to use a different price system for public firms as emphasized

in Naito (1999).

IV.2.c Commodity taxation

The framework employed to analyze the taxation of intermediate goods, in Section IV.2.a, can be

applied to consider whether the taxation of final goods should be uniform when the utility is weakly

separable in leisure and consumption, as examined by Atkinson and Stiglitz (1976). Their theorem
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considers that each taxpayer has preference over factor x and commodities z = (z1, ..., zS), according

to a weakly separable utility function of the form U (V (z1, ..., zS),x;w). We can align our model with

theirs by interpreting our intermediate goods within our framework of Section IV.2.a as their commodities

(z1, ..., zs). Additionally, assume that all taxpayers in Section IV.2.a produce and consume one final

good z0 using the same production function z0 = V (z1, ..., zn) so that this corresponds to the sub-

utility obtained from commodities in Atkinson and Stiglitz (1976). We assume constant returns to scale

in the production functions of the intermediate good sectors s ∈ 1, ..., S and that final goods are not

employed as production factors (thus, zφ,s0 = 0 for all firms φ ∈ 1, ..., Ns in sectors s = 1, ..., S). Upon

this reinterpretation, our taxation of intermediate goods in Section IV.2.a is taxation of commodities in

Atkinson and Stiglitz (1976). Therefore, the no-tax result on intermediate goods discussed in Section

IV.2.a translates to a no-tax result on commodities, or equivalently, uniform commodity tax rates, in

Atkinson and Stiglitz (1976).

Thanks to this reinterpretation of the model, our Proposition 10 implies that the no-commodity taxa-

tion result of Atkinson and Stiglitz (1976) remains robust to endogenous producer prices, whenever the

tax system can be reformed along the GE-replicating directions. This holds e.g. in the long-run model

of Saez (2004) where taxation is occupation-specific hence exhaustive. Conversely, in e.g. Naito (1999),

the short-run model of Saez (2004) or in Jacobs (2015), the income tax system does not discriminate

between the different types of labor, i.e. is not exhaustive. The same level of income drives the same tax

rate, even when earned by different labor types. In this type of framework, the tax systems can there-

fore not be reformed along GE-replicating directions specific to each type of labor. Commodity taxation

should then not be uniform and may have a pre-distributive role, which is described in Equation (54) in

Proposition 9. It is worth mentioning that our reinterpretation of Atkinson and Stiglitz (1976)’s theorem

leading to no-tax on intermediate goods does not hold when taxpayers have different preferences V(·)
over commodities, as in e.g. Saez (2002b) and Ferey et al. (2024).

IV.2.d Trade policy

We now adapt our multi-sector framework to discuss the desirability of trade liberalization policies.

For this purpose, we assume that, in each sector s ∈ {0, ..., n}, certain firms operate abroad. Regardless

of whether firms are domestic or foreign, the arguments of the production function refer only to goods

or production factors from the home country. Foreign firms φ ∈ {1, ..., Ns} in sector s ∈ {0, ..., S}
do not use domestic factors of production, so Xφ,s

i = 0 for all i ∈ {1, ..., n}, but these foreign firms

import intermediate goods zφ,ss′ from sector s′ ̸= s. Their imports of goods s are given by Fφ,s (zφ,s;α),

where α captures the impact of trade frictions. In particular, αs captures various costs associated with

the imports or exports of foreign producers in sector s, costs that trade policies can diminish, so that

Fφ,s
α < 0 for foreign firms. Conversely, trade policies do not impact the production possibilities of

39



domestic firms, hence, Fφ,s
α = 0 for domestic firms. Assuming perfect competition, the competitive al-

location of resources within the production sector coincides with the solution of the following production

coordinator’s program:

max
{Xφ,s,zφ,s}φ=1,..,Ns

s=0,...,S

N0∑

φ=1

Fφ,0
(Xφ,0, zφ,0;α

)
−

S∑

s=1

Ns∑

φ=1

zφ,s0 (63a)

∀i ∈ {1, ..., n} : Xi =
S∑

s=0

Ns∑

φ=1

Xφ,s
i (63b)

∀s ∈ {1, ..., S} :

Ns∑

φ=1

Fφ,s (Xφ,s, zφ,s;αs) =

S∑

s′=0
s′ ̸=s

Ns′∑

φ=1

zφ,s
′

s . (63c)

As in Subsection IV.2.a, for each vector of factor supply (X1, ...,Xn) and each vector (α0, ..., αS) of

sector-specific trade costs, the inverse demands Pi(·) are defined as the Lagrange multipliers associated

to (63b) and the production function F(·) is the value function associated to Program (63a)-(63c). A

policy that reduces trade costs is therefore unambiguously production efficient. The desirability of trade

liberalization policies thus depends solely on whether or not the income tax system can be reformed

along the n GE-replicating directions of the tax reforms. This is the case in Diamond and Mirrlees

(1971), Dixit and Norman (1980, 1986) where the tax system include sector-specific and linear taxes on

labor. Production efficiency and free trade then follow. The multi-country Ricardian model of trade pro-

posed by Hosseini and Shourideh (2018) also aligns with production efficiency. Conversely, in Costinot

and Werning (2022), the different types of labor are imperfect substitutes but generate incomes that the

tax administration cannot distinguish and therefore must tax comprehensively. Due to this lack of exhaus-

tiveness, the tax system cannot be reformed along all the GE-replicating directions of the tax reforms. In

this context, barriers to trade can have a beneficial pre-distibutive role.

IV.2.e Competition policy

The production efficiency principle applies to any policy that affects the economy only by shifting

factor demands. It then also applies to corporate law, regulation, competition policy, etc. We illustrate

this with an example where a pro-competitive policy reduces oligopolistic rents.

Consider that all firms, within each sector, have the same production function with constant returns

to scale. There is perfect competition in the final goods sector s = 0 and Cournot competition in the

intermediate goods sectors s ∈ {1, ..., S}. Intermediate goods are produced using factors of production.

Conversely, the final good is produced using both intermediate goods and factors of production according

to the following Cobb-Douglas production function:

Fφ,0
0

(Xφ,0, zφ,0
)
=

S∏

s=1

(
zφ,0s

)βs

n∏

i=1

(
Xφ,0
i

)γi
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where βs ≥ 0, γi ≥ 0 and
∑S

s=1 βs +
∑n

i=1 γi = 1. In all sectors s ∈ {0, ..., S}, let zφ,ss denote the

output of firm φ ∈ {1, ...Ns}, let zs
def≡ ∑Ns

φ=1 z
φ,s
s denote the total output of the intermediate good s and

let zφ,−s
s

def≡ zs − zφ,ss denote the amount of intermediate good s produced by the competitors of firm φ.

The program of the final good producer φ ∈ {1, ..., N0} is:

max
Xφ,0,zφ,0

S∏

s=1

(
zφ,0s

)βs

n∏

i=1

(
Xφ,0
i

)γi −
S∑

s=1

qs z
φ,0
s −

n∑

i=1

pi Xφ,0
i .

Since, in the final goods sector, all production functions admit constant returns to scale and are identical,

the first-order condition of this program leads to the following inverse demand for the sth intermediate

good:

qs = βs
(
z0s
)βs−1

S∏

s′=1,s′ ̸=s

(
z0s′
)βs′

n∏

i=1

(
X 0
i

)γi

where X 0
i

def≡ ∑N0
φ=1X

φ,s
i denotes the sum of the ith production factor used in the final good sector.

Because there are many firms in the final good sector and because there are many intermediate goods

sectors, intermediate goods producers take prices p1, ..., pn of production factors as given. They more-

over take the output of the other intermediate goods producers as given. Since only final goods producers

purchase intermediate goods, one has z0s = zs = zφ,ss + zφ,−s
s . The intermediate goods producer φ in

sector s thus solves:

max
Xφ,s,zφ,s,qs

qs Fs (Xφ,s, zφ,s)−
n∑

i=1

pi Xφ,s
i (64)

s.t : qs = βs
(
Fs (Xφ,s, zφ,s) + zφ,−s

s

)βs−1
S∏

s′=1,s′ ̸=s

(
z0s′
)βs′

n∏

i=1

(
X 0
i

)γi .

At the symmetric Cournot-Nash equilibrium, within each sector, all producers make the same choices,

so zs = Ns z
φ,s
s and zφ,−s

s = (Ns − 1)zφ,ss . The first-order conditions associated with (64) thus imply:

∀i ∈ {1, ..., n} : pi = qs(1− αs)Fφ,s
Xi

where, αs
def≡ (1−βs)/Ns indicates how much output price qs is overpriced due to imperfect competition.

Since the production functions have constant returns to scale, αs also denotes the profit share in sector

s. Under Cournot competition, this profit share is a decreasing function of the number Ns of firms and

an increasing function of the elasticity 1 − βs of the inverse demand for the sth intermediate good in

absolute value. Production policies directly set these sector-specific markups αs. Taking into account

profits, the allocation of resources within the production sector under Cournot competition coincides
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with the solution of the following production coordinator’s program:

max
{Xφ,s,zφ,s}φ=1,..,Ns

s=0,...,S

N0∑

φ=1

Fφ,0
(Xφ,0, zφ,0

)
(65a)

∀i ∈ {1, ..., n} : Xi =
S∑

s=0

Ns∑

φ=1

Xφ,s
i (65b)

∀s ∈ {1, ..., S} : αs Zs + (1− αs)

Ns∑

φ=1

Fφ,s (Xφ,s, zφ,s) =

N0∑

φ=1

zφ,0s (65c)

where:

∀s ∈ {1, ..., S} : Zs
def≡

Ns∑

φ=1

Fφ,s (Xφ,s, zφ,s) (65d)

is taken as given by the production coordinator. As in Subsection IV.2.a, for each vector of factor supply

(X1, ...,Xn), vectors of sector-specific mark-ups (α1, ..., αS) and of sector-specific profits (Z1, ..., Zs),

the inverse demands Pi(·) are defined as the Lagrange multipliers associated to (65b). The production

function F(·) is the value function associated to Program (65a)-(65c).32

Production enhancing competition policies consists in reduction in markups αs. Therefore, according

to Proposition 10, whenever the tax system can be improved along all the GE replicating directions,

the production efficiency principle applies, and reducing markups is always desirable. We think this

result can be generalized beyond the specific case of Cournot competition. Any competition policy that

reduces markups αs is desirable provided that the tax system aligns with respect to tax reforms in the

GE-replicating directions. We posit that this extends to policies like merger regulations in the case of

horizontal or vertical integration, as well as to corporate law.

IV.2.f The effects of business-focused environmental regulations

Consider now the scenario where the production sector is polluting, e.g. with carbon emissions

and firms have the option to mitigate emissions by adopting cleaner technologies. Production policy

consists in taxing carbon emissions. Here, intermediate good producers not only produce intermediate

goods according to the production function Fφ,s(Xφ,s
1 , ...,Xφ,s

n ;βφ,s) but also emit carbon according to

Eφ,s(Xφ,s
1 , ...,Xφ,s

n ;βφ,s) where βφ,s is the degree of cleanliness in the technology adopted by firm φ

in sector s. Employing more production factor increases both production and pollution, thus Fφ,s
Xi

> 0

and Eφ,s
Xi

> 0. Production is concave in βφ,s with a maximum at a level normalized to zero. Hence

Fφ,s
β < 0 if βφ,s > 0 and Fφ,s

β > 0 if βφ,s < 0. Conversely, carbon emissions decrease when firms

adopt greener technology, thus Eφ,s
β < 0. We assume that the government can observe each firm’s carbon

emissions and tax them at a rate denoted by α. Assuming perfect competition and a constant returns to
32The allocation of resources actually solves a fixed-point problem since the production coordinator’s program solves (65a)-

(65c) taking (Z1, ..., Zs) as given, while (Z1, ..., Zs) is determined by the solution of the production coordinator’s program
through (65d).
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scale production functions, firm φ ∈ {1, ..., Ns} in sector s solves:

max
Xφ,s

1 ,...,Xφ,s
n ,βφ,s

qs Fφ,s (Xφ,s
1 , ...,Xφ,s

n ;βφ,s)−
n∑

i=1

pi Xφ,s
i − α Eφ,s (Xφ,s

1 , ...,Xφ,s
n ;βφ,s) .

This leads to the following first-order conditions:

∀i ∈ {1, ..., n} : qs Fφ,s
Xi

= pi + α Eφ,s
Xi

and : qs Fφ,s
β = α Eφ,s

β (66)

As in IV.2.c, each taxpayer produces a final good through the same production function, which is denoted

F0(·).33 Moreover, pollution exerts a negative externality. Hence F0 is decreasing in aggregate emissions

E def≡ ∑S
s=1

∑Ns
φ=1 Eφ,s (Xφ,s;βφ,s), so we have F0 (z1, ..., zS , E), with F0

zi > 0 > F0
E . For tractability,

we assume that the final good production function exhibits constant returns to scale with respect to

intermediate goods consumption (z1, ..., zS). This leads to the intermediate goods demand conditions:

∀s ∈ {1, ..., S} : qs = F0
zs

(
z01 , ..., z

0
S , E

)
, (67)

where

z0s
def≡

Ns∑

φ=1

Fφ,s (Xφ,s, βφ,s)

denotes the total production of the sth intermediate good.

The competitive allocation of resources within the production sector is the same as the one chosen

by an hypothetical production coordinator whose program consists in:

max
{Xφ,s,βφ,s}φ=1,..,Ns

s=1,...,S ,z01 ,...,z
0
S

F0
(
z01 , ..., z

0
S , E

)
− α

S∑

s=1

Ns∑

φ=1

Eφ,s (Xφ,s;βφ,s) + α E (68a)

∀i ∈ {1, ..., n} : Xi =

S∑

s=1

Ns∑

φ=1

Xφ,s
i (68b)

∀s ∈ {1, ..., S} :

Ns∑

φ=1

Fφ,s (Xφ,s, βφ,s) = z0s . (68c)

where the production coordinator takes aggregate emissions

E =

S∑

s=1

Ns∑

φ=1

Eφ,s (Xφ,s;βφ,s) (68d)

and carbon tax revenue α E as given.34

33Again this production function for final good coincide with a reinterpretation of the subutility function V(·) à la Atkinson
and Stiglitz (1976).

34Denoting pi the Lagrange multiplier associated to the ith equation (68b) and qs the Lagrange multiplier associated to sth

equation (68c), the first-order conditions of (68) with respect to Xφ,s, βφ,s and z0s leads to (66) and (67). Since the production
coordinator is constrained by the same resource constraints (68c) as the competitive economy, the production allocation chosen
by the production coordinator coincides with that of the competitive economy. Finally, since revenue from carbon tax α E
shows up in the production coordinator’s objective (68a), the Walras Law ensures that the value function associated to the
production coordinator’s program (68) verifies the accounting equation (7).
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For each vector of factor supply (X1, ...,Xn), each carbon tax rate α and each carbon tax revenue

α E , the inverse demands Pi(X1, ...,Xn;α, E) are defined as the Lagrange multipliers associated to

constraints (68b) and the production function F(X1, ...,Xn;α, E) is the value function associated to

program (68a)-(68c). The carbon tax maximizing this aggregate production verifies35 the Pigouvian rule

F0
E = −α that correct for the externality.

According to Proposition 10, whenever the government can reform the tax system in all the GE-

replicating directions Rj for j = 1, ..., n, the optimal carbon tax verifies F0
E = −α. The redistributive

consequences of this carbon tax can then be offset by tax reforms in the GE-replicating directions.

V Conclusion

In a framework with multiple income sources, taxpayers who differ along many unobserved dimen-

sions and potential imperfect competition in the production sector, we have addressed two fundamental

questions on appropriate income tax and production policies – such as taxation of intermediate goods,

provision of public goods by the government, taxing robots, competition and trade policies, financial

markets regulation, business laws, intellectual property protection, immigration policies and technolog-

ical changes–. First, we have studied how the endogeneity of prices, stemming from factors’ supply,

influences the optimal tax formulas and the incidence tax formulas. In this General Equilibrium (GE)

environment, we have derived an empirical test for Pareto-improving tax reforms. Second, we have an-

alyzed whether policy reforms affecting the production sector (i.e. any change in guidelines, strategies,

or government interventions that directly impact production with only indirect consequences for con-

sumers) should exclusively aim at enhancing production efficiency or whether their design should also

incorporate redistributive concerns. We have shown that when the tax system allows for directions that

can be modified to counteract the impact of prices (so-called GE-replicating directions of tax reforms),

production policy reforms should aim only to improve production efficiency. In this case, all taxation

formulas diverge from those obtained in Partial Equilibrium solely by a a term that corrects for potential

discrepancies between private and social returns of factors. However, when the tax system does not allow

for the correction of production inefficiencies, new empirically meaningful statistics, called GE multipli-

ers, have to be considered in the formulas for optimal taxation, tax incidence, Pareto improvements and

optimal production policies. We explain when and how the tax system can correct for the inefficiency

created by production policy reforms and how the calculation of GE multipliers depends on the type of

tax system.

There are several avenues for further research. For instance, we could examine tax incidence and the

optimal combination of labor and housing taxation, as well as the optimal taxation of various financial
35Applying the envelope theorem to Program (68) with respect to α and taking (68d) into account leads formally to Fα = 0.

Applying the envelope theorem with respect to E leads to FE = F0
E + α.
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income sources and capital gains. Another area of potential exploration includes determining the optimal

taxation of capital income and wealth. It would also be worthwhile to expand the analysis of the political

feasibility of tax reforms carried out by Bierbrauer et al. (2021) to our GE environment, which takes into

account GE effects, multidimensional heterogeneity and cross-base responses.
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Online Appendix

A Appendix related to Section II

A.1 Convexity of the Indifference Set

Let C (·,x;w) denote the reciprocal of U (·,x;w). Taxpayers of type w who supply factors x
obtain consumption c = C (u,x;w) to enjoy utility u = U (c,x;w). Using (2), we obtain:

Cu(u,x;w) =
1

Uc (C (u,x;w),x;w)
Cxi(u,x;w) = Si (C (u,x;w),x;w) (A.1)

For each type w ∈ W and each utility level u, we assume that the indifference set y 7→ C (u, y1/p1,
..., yn/pn;w) is strictly convex. The ith partial derivative of y 7→ C (u, y1/p1, ..., yn/pn;w) being
(1/pi)Si(C (u, y1/p1, ..., yn/pn;w), y1/p1, ..., yn/pn;w), the Hessian is matrix:

[
Si
xj

+ Si
cSj

pi pj

]

i,j

=

[
−Uxixj + SjUcxi + SiUcxj + SiSjUcc

pi pj Uc

]

i,j

which is symmetric. Finally, the latter matrix is obviously positive definite if and only if matrix
[
Si
xj

+ Si
cSj
]
i,j

is positive definite as well. The first-order condition of (4) is given by:

0 = (1− Tyi(y)) Uc

(
n∑

k=1

yk − T (y) ,
y1
p1

, ...,
yn
pn

;w

)
+

1

pi
Uxi

(
n∑

k=1

yk − T (y) ,
y1
p1

, ...,
yn
pn

;w

)
.

Therefore, using (5), the matrix of the second-order condition is:
[

Uxixj + SjUcxi + SiUcxj + SiSjUcc

pi pj
− UcTyiyj

]

i,j

= −Uc

[
Si
xj

+ Si
cSj

pipj
+ Tyiyj

]

i,j

Hence, for taxpayers of type w, the second-order condition holds strictly if and only if the matrix[
Si
xj

+ Si
cSj

pi pj
+ Tyiyj

]

i,j

is positive definite, i.e. if and only if the indifference set y 7→ C (U(w), y1p1 , ...,
yn
pn
;w)

is strictly more convex than the budget set y 7→∑n
k=1 yk − T (y) at y = Y(w).

A.2 Examples of applications

The two-period model with labor and savings

The two-period model has been widely used in the literature to study capital taxation since Atkinson
and Stiglitz (1976). Taxpayers are characterized by w = (w1, w2) where w1 is individual labor produc-
tivity and w2 is initial wealth, which may come from previously saved labor income (Judd, 1985, Cham-
ley, 1986) or inherited wealth.36 In the first period, taxpayers save x2 and consume cper.1 = w2 − x2. In
the second period, they earn capital income y2 = p2 x2 where p2 is the (endogenous) return on savings
and labor income y1 = p1 x1 where x1 is the efficient units of labor they supply. Their consump-
tion in the second period is the sum of both their capital and labor incomes minus taxes T (y1, y2), i.e.
cper.2 = y1 + y2 − T (y1, y2). This corresponds to our definition of after-tax income c in the general
framework. We represent the preferences of taxpayers over first period consumption cper.1, second pe-
riod consumption cper.2, and efficient units of labor x1 as (cper.1, cper.2, x1) 7→ U(cper.1, cper.2, x1;w1),

36We here depart from the usual timing assumption where labor and capital incomes are taxed in distinct periods.
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which we use to retrieve the utility function of the general framework through the following change of
variables:

U (c, x1, x2;w)
def≡ U


w2 − x2︸ ︷︷ ︸

=cper.1

, c︸︷︷︸
=cper.2

, x1;w1


 . (A.2)

The two-period model is able to capture the essential mechanisms by which taxation affects individ-
ual behaviors in most macroeconomic models. Individuals accumulate capital through savings, which
requires forgoing consumption. These concepts are crucial for characterizing the steady state(s) in the
neoclassical growth model (Ramsey, 1928) and in the overlapping generation model (Diamond, 1965).
In addition, unlike models such Judd (1985) and Chamley (1986), which assume an infinite elasticity
of supply of capital, our framework allows for an elasticity of supply of any factor with respect to its
tax rate that can take any value, including an infinite elasticity. Lastly, our two-period framework can
be expanded to accommodate various forms of capital income (such as dividends, interest, realized and
unrealized capital gains).

Roy model

Our framework can also encompass economies with different sectors, occupations, or industries, as
in Rothschild and Scheuer (2013, 2014, 2016), Scheuer (2014) and Gomes et al. (2017). For each sector
i = 1, ..., n, taxpayers choose the amount xi of labor supplied. The production of each sector is equal to
Xi =

∫
W Xi(w) dF (w). The consumption good is produced by combining the production of all sectors

according to the production function F(X1, ...,Xn). In Rothschild and Scheuer (2013), Scheuer (2014)
and Gomes et al. (2017), workers can supply labor only in one sector. In our model, this consists in
assuming that U (c,x;w) = −∞ if more than one supply of factor is positive.

An income-shifting model

Our framework is consistent with income-shifting. Entrepreneurs may relabel some of their labor
income as capital for tax avoidance purpose, a central tax policy issue according to Saez and Zucman
(2019) after many others (Christiansen and Tuomala, 2008, Selin and Simula, 2020). To follow this liter-
ature, we consider income shifting behaviors assuming exogenous prices. This occurs for instance under
perfect competition when the production function is given by: F (X1, ...,Xn,α) =

∑n
i=1Xi,which im-

plies p1 = ... = pn = 1. To ease the presentation, we focus our attention here on two sources of
income (i = 1, 2). Let z1 and z2 represent the true first and second sources of income for taxpayers,
which are unobserved by the government. Let the preferences of a w-taxpayer be described by the util-
ity function (c, z1, z2) 7→ U(c, z1, z2) with Uz1 ,Uz2 < 0 < Uc.37 Let s ≷ 0 depict the amount of
the first source of income taxpayers shift to be realized as the other source of income. Income shifting
involves a monetary costs S(s;w) with S being convex in s for all w-taxpayers. The reported income
sources are then y1 = x1 = z1 − s and y2 = x2 = z2 + s. Consumption, that we denote d, is
d = y1 + y2 − S(s;w) − T (y1, y2) with Ud > 0. Expressing this equation in terms of the general
framework’s after-tax income c = y1 + y2 − T (y1, y2), it can be rewritten as d = c− S(s;w).

The determination of the amount of shifted income s is a subprogram for which the value function
enables us to retrieve the utility function of the general framework as follows:

U (c, x1, x2;w)
def≡ max

s
U


c− S(s;w)︸ ︷︷ ︸

=d

, x1 + s︸ ︷︷ ︸
=z1

, x2 − s︸ ︷︷ ︸
=z2

;w


 (A.3)

The government budget constraint is unaffected since taxes are based on observed income y1 and y2.
37For instance, taxpayers can be self-employed and business-owners with effective labor income z1 and income from their

business z2. In this example, w1 is labor ability and w2 pertains to the ability to generate return on business.
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Naturally, shifted income s could also be investment in tax heavens. In this case, y2 = x2 = z2 + s
is reinterpreted as income invested in tax heavens which is unobserved by the government. This income
is not taxed under T (·) yet it does not alter the optimal tax formula for each taxable income source.

In this income-shifting version of our model, we assume exogenous prices. Naturally, one could
extend this example to encompass both income-shifting behaviors and endogenous pricing.

B Appendix related to Section III

B.1 Proof of Lemma 1

To be able to apply the implicit function theorem to the first-order condition associated to the indi-
vidual maximization program, we presume Assumption 1 is verified.

B.1.a Assumption 1

Part (i) of Assumption 1 ensures that first-order conditions (5) are continuously differentiable in
incomes y. It rules out kinks in the tax function, thereby bunching.38 Parts (i) and (ii) of Assumption
1 together enable one to apply the implicit function theorem to first-order conditions (5) to ensure that
each local maximum of

y 7→ U

(
n∑

k=1

yk − T (y) + t R(y),
y1
p1

, ...,
yn
pn

;w

)

is differentiable in type w, in price p and in the tax perturbation’s magnitude t. Part (iii) of Assumption 1
rules out the existence of multiple global maxima. This prevents the incremental tax reform from causing
a jump in the taxpayer’s choice from one maximum to another. Part (iii) also ensures the allocation
changes in a differentiable way with the magnitude of the tax reform and with types.

Because the indifference set is convex (see Appendix A.1), Assumption 1 is automatically satisfied
when the tax schedule is linear, or when the tax schedule is weakly convex. It is also satisfied when
the tax schedule is not “too” concave, so that function y 7→ ∑n

k=1 yk − T (y) is either concave, linear
or less convex than the indifference set with which it has a tangency point in the (y, c)-space (so that
Part ii) of Assumption 1 is satisfied). Geometrically, it implies that, for each type w, the indifference set
defined by y 7→ C

(
U(w), y1p1 , ...,

yn
pn
;w
)

admits a single tangency point with the budget set defined by

y 7→∑n
k=1 yk − T (y) and lies strictly above the budget set for all other y.

B.1.b Taxpayers’ program

Since w-taxpayers take the prices p = (p1, ..., pn) after any tax reform as given, they solve, under
the tax schedule y 7→ T (y) − t R(y), the following program that depends on the direction R(·) and
magnitude t of the tax reform and on the price vector p:

UR,PE(w; t,p)
def≡ max

x1,...,xn

U

(
n∑

i=1

pixi − T (p1x1, ..., pnxn) + t R(p1x1, ..., pnxn), x1, ..., xn;w

)
.

(A.4)
38In reality, most of real world tax schedules are piecewise linear. From theory, one should observe bunching at convex

kinks and gaps at concave kinks. Empirically, most convex kinks do not cause significant bunching, with the exception of the
self-employed in the United States at the first kink point of the EITC Saez (2010). Moreover, no gap is observed at concave
kinks. These discrepancies between the theoretical predictions and empirical evidence can be reconciled by assuming that
taxpayers do not optimize with respect to the exact tax schedule but with respect to some smooth approximation of it, e.g.
y 7→

∫
T (y + u) dΨ(u) where u is an n-dimensional random shock on incomes with joint CDF Ψ, which does verify part i)

of Assumption 1.
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Note that (A.6) also holds out of the GE where p = (pR1 (t), ..., p
R
n (t)). The first-order conditions are:

Si

(
n∑

i=1

pi xi − T (p1 x1, ..., pn xn) + t R(p1 x1, ..., pn xn), x1, ..., xn;w

)
(A.5)

= pi [1− Tyi(p1 x1, ..., pn xn) + t Ryi(p1 x1, ..., pn xn)] , ∀i ∈ {1, ..., n} .

Let XR,PE(w, t,p) = (XR,PE
1 (w, t,p), ..., XR,PE

n (w, t,p)) denote the solution of this program and

let Y R,PE
i (w, t,p)

def≡ pi X
R,PE
i (w, t,p). At the GE where pj = pRj (t), one obviously has Y R

i (w, t) ≡
Y R,PE
i (w,pR(t)) for all i ∈ {1, ..., n} and UR(w, t) ≡ UR,PE(w,pR(t)).

Under Assumption 1, the implicit function theorem ensures that the solution XR,PE(w, t,p) to
program (A.4) is differentiable with respect to t, p and w. Moreover, its partial derivatives, at p =
(pR1 (0), ..., p

R
n (0)) and t = 0, can be obtained by differentiating Equations (A.5) at x = X(w) and

t = 0, which leads to:

∀i ∈ {1, ..., n} :
n∑

j=1

[
Si
xj

+ Si
cSj + pi pj Tyiyj

]
dxj =

[
pi Ryi(Y(w))− Si

c R(Y(w))
]
dt+

n∑

j=1

(
(1− Tyj )1i=j − (1− Tyj ) xj Si

c − pi xj Tyiyj
)
dpj .

This differentiation can be rewritten in matrix form as:
[
Si
xj

+ Si
cSj + pipjTyiyj

]
i,j

· dxT =
[
pi Ryi(Y(w))− Si

c R(Y(w))
]T
i
dt

+
[
(1− Tyj )

(
1i=j − xj Si

c

)
− pi xj Tyiyj

]
i,j

· dpT .

where superscript T denotes the transpose operator[Ai,j ]
T
i,j = [Aj,i]i,j and "·" denotes the matrix product.

Matrix
[
Si
xj

+ Si
cSj + pipjTyiyj

]
i,j

is the Hessian matrix associated to the maximization program (A.4).

It is therefore symmetric and semi-positive definite. From point (ii) of Assumption 1, this matrix is
positive definite, thereby invertible. Let Hi,j denote the term in the ith row and jth column of the inverse
of the Hessian matrix. We obtain:

dxi =
n∑

k=1

Hi,k

[
pk Ryk(Y(w))− Sk

c R(Y(w))
]
dt (A.6)

+
n∑

j=1

{
n∑

k=1

Hi,k

[
(1− Tyj )

(
1k=j − xj Sk

c

)
− pk xj Tykyj

]}
dpj

Under a compensated tax reform of the jth marginal tax rate at income y = Y(w) where R(y) =
yj − Yj(w), one has R(Y(w)) = 0 and Ryk(Y(w)) = 1k=j . Hence, according to (A.6) compensated
responses are given by:

∂Xi(w)

∂τj
= pj Hi,j ,

∂Yi(w)

∂τj
= pi pj Hi,j (A.7a)

with ∂Yi(w)
∂τj

=
∂Yj(w)
∂τi

since the Hessian matrix is symmetric.
Under a lump-sum tax reform where R(y) = 1, one has R(Y(w)) = 1 and Ryk(Y(w)) = 0.

Hence, according to (A.6), income effects are given by:

∂Xi(w)

∂ρ
= −

n∑

k=1

Hi,k Sk
c ,

∂Yi(w)

∂ρ
= −pi

n∑

k=1

Hi,k Sk
c . (A.7b)
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Under an uncompensated tax reform of the jth marginal tax rate where R(y) = yj , one gets
R(Y(w)) = Yj(w) and Ryk(Y(w)) = 1j=k. Hence, according to (A.6), uncompensated responses
are given by:

∂Xu
i (w)

∂τj
= pj

(
Hi,j −Xj(w)

n∑

k=1

Hi,k Sk
c

)
∂Y u

i (w)

∂τj
= pi pj Hi,j − pi Yj(w)

n∑

k=1

Hi,k Sk
c .

(A.7c)
Simplifying Equation (A.7c), with (A.7a) and (A.7b), yields the Slutsky Equations (20) and

∂Xu
i (w)

∂τj
=

∂Xi(w)

∂τj
+ Yj(w)

∂Xi(w)

∂ρ
. (A.7d)

According to (A.6), the responses to changes in prices are given by:

∂Xi(w)

∂pj
= (1− Tyj )

(
Hi,j −Xj(w)

n∑

k=1

Hi,k Sk
c

)
−Xj(w)

n∑

k=1

pk Hi,k Tykyj . (A.7e)

Using (A.7a) and (A.7c), the latter equation can be rewritten as:

∂Xi(w)

∂pj
=

1− Tyj
pj

∂Xu
i (w)

∂τj
−Xj(w)

n∑

k=1

∂Xi(w)

∂τk
Tykyj . (A.7f)

This yields:

∂Yi(w)

∂pj
= 1i=j Xi(w) +

1− Tyj
pj

∂Y u
i (w)

∂τj
−Xj(w)

n∑

k=1

∂Yi(w)

∂τk
Tykyj .

Multiplying both sides of the previous equation by pj leads to (19).

B.1.c Taxpayers’ responses

Consider a tax perturbation, as detailed in Definition 3, which implies that prices are determined by

t 7→ (pR1 (t), ..., p
R
n (t)). Plugging dpj =

∂pRj (t)

∂t dt into (A.6) leads to:

∂XR
i (w, t)

∂t
=

n∑

k=1

Hi,k

[
pk Ryk(Y(w), 0)− Sk

c R(Y(w), 0)
]

+
n∑

j=1

{
n∑

k=1

Hi,k

[
(1− Tyj )

(
1k=j − xj Sk

c

)
− pk xj Tykyj

]} ∂pRj (t)

∂t

Using (A.7a), (A.7b) and (A.7e), we obtain:

∂XR
i (w, t)

∂t
=

n∑

k=1

∂Xi(w)

∂τk
Ryk(Y(w)) +

∂Xi(w)

∂ρ
R(Y(w)) +

n∑

j=1

∂Xi(w)

∂pj

∂pRj (t)

∂t
(A.8)

which, eventually, leads to (14). Applying the envelope theorem to (A.4), we obtain:

∂UR,PE(w, t,p)

∂t
= Uc (C(w),X(w);w) R (Y(w)) (A.9a)

∂UR,PE(w, t,p)

∂pj
= Uc (C(w),X(w);w)

(
1− Tyj (Y(w))

)
Xj(w)

∂UR,PE(w, t,p)

∂log pj
= Uc (C(w),X(w);w)

(
1− Tyj (Y(w))

)
Yj(w) (A.9b)
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where the last equality follows from (2) and (5). Applying chain rule and using (A.9a) and (A.9b) leads
to (15).

Note that for each type w and price p, the mappings R 7→ ∂Y R
i (w, t)/∂t and R 7→ ∂UR(w, t)/∂t

are continuous and linear, i.e., for all functions R1, R2 and scalars ζ1, ζ2, one has:

∂Y ζ1R1+ζ2R2
i (w, t)

∂t
= ζ1

∂Y R1
i (w, t)

∂t
+ ζ2

∂Y R2
i (w, t)

∂t

and
∂U ζ1R1+ζ2R2(w, t)

∂t
= ζ1

∂UR1(w, t)

∂t
+ ζ2

∂UR2(w, t)

∂t
.

In other words, not only Y R
i (w, t) and UR(w, t) admit partial derivatives with respect to t at t = 0 for

any direction R, but these functions are Gateaux differentiable with respect to the tax schedule, since the
partial derivatives are linear and continuous functions of the direction R(·).

B.1.d Proof of Lemma 1

A tax reform impacts the tax liability of w-taxpayers T
(
YR(w, t)

)
− t R

(
YR(w, t)

)
through

mechanical and behavioral effects as follows:

∂
[
T
(
YR(w, t)

)
− t R

(
ỸR(w, t)

)]

∂t
= −R(Y(w))︸ ︷︷ ︸

Mechanical effects

+
n∑

i=1

Tyi(Y(w))
∂Ỹ R

i (w, t)

∂t
︸ ︷︷ ︸

Behavioral effects

. (A.10)

Plugging (14) into (A.10) to decompose the response of the w-taxpayers’ ith income, we obtain:

∂
[
T
(
YR(w, t)

)
− t R

(
YR(w, t)

)]

∂t
= −

[
1−

n∑

i=1

Tyi(Y(w))
∂Yi(w)

∂ρ

]
R(Y(w)) (A.11)

+
∑

1≤i,j≤n

Tyi(Y(w))
∂Yi(w)

∂τj
Ryj (Y(w)) +

∑

1≤i,j≤n

Tyi(Y(w))
∂Yi(w)

∂log pj

∂log pRj (t)

∂t
.

Combining (A.11) and (15), and aggregating for all types leads to (17) and (18). Note that BR(t), W R(t)
and L R(t) inherit the Gateaux differentiability with respect to the direction R(·) of the tax schedule from
that of Y R

i (w, t) and of UR(w, t).

B.2 Proof of Proposition 1

B.2.a Proof of Lemma 2

Define the aggregate ith income as function of the price p and of the magnitude t of the tax perturba-
tion y 7→ T̃ (y, t) as follows:

YR,PE
i (t,p)

def≡
∫

W
Y R,PE
i (w, t,p) dF (w)

From the inverse demand equations (6), and since an equilibrium is assumed to exist and to be unique,
prices pR(t) = (pR1 (t), ..., p

R
n (t)) solve:

∀t,∀i ∈ {1, ..., n} pRi (t) = Pi

(
YR,PE
1 (t,p)

pR1 (t)
, ...,

YR,PE
n (t,p)

pRn (t)
,α

)
. (A.12)

Log-differentiating the latter equation and using (24a) leads to:
[
dpRi
pi

]

i

= Ξ ·
[
dXR

i

Xi

]

i

+
L∑

ℓ=1

[
∂logPi

∂αℓ

]
dαℓ, (A.13a)

6



where
[
dXR

i /X
]
i
=
[
dYR

i /Y
]
i
−
[
dpRi /pi

]
i

is the vector of log variations of aggregate factor. Aggre-
gating (14) over all types and using (24b) and (26) yields:

[
dXR

i

Xi

]

i

= Γ ·
[
dpRi
pi

]

i

+

[
∂logYR,PE

i

∂t

]

i

dt. (A.13b)

Combining the latter two equations leads to:

[
dpRi
pi

]

i

= Ξ · Γ ·
[
dpRi
pi

]

i

+ Ξ ·
[
∂logYR,PE

i

∂t

]

i

dt+

L∑

ℓ=1

[
∂logPi

∂αℓ

]
dαℓ

and finally:

(In − Ξ · Γ) ·
[
dpRi
pi

]

i

= Ξ ·
[
∂logYR,PE

i

∂t

]

i

dt+
L∑

ℓ=1

[
∂logPi

∂αℓ

]
dαℓ

Under Assumption 2, one can apply the implicit function theorem to ensure that the vector of prices is
differentiable with respect to t and α, and we obtain Equations (25) and (52).

B.2.b Proof of Lemma 3 and of Part i) of Proposition 1

The tax reform impact on the Lagrangian induced by price changes is given by:

n∑

j=1

∂L

∂log pj

∂log pRj
∂t

=
∂L

∂log p
· ∂log pR

∂t

=
∂L

∂log p
· (In − Ξ · Γ)−1 · Ξ · ∂logY R,PE

∂t

=
n∑

i=1

ηi
1

Yi

∂YR,PE
i (t)

∂t

=
n∑

i=1

µi
∂YR,PE

i (t)

∂t

The first equality rewrites the LHS in matrix terms. The second equality is derived from (25). The third
equality uses (29) and expands the obtained expression in scalar terms, and the last equality is a result of

the definition µi
def≡ ηi/Yi. Substituting (27) into (17) yields Equation (30), which concludes the proof

of Part i) of Proposition 1.

B.2.c Proof of Part ii) of Proposition 1

Consider a tax reform direction R(·). Let r(t) be the lump-sum rebate required to ensure a balanced
budget for the tax reform y 7→ T (y)− t R(y) + r(t). For any variable A, we denote ∂AR,BB/∂t as the
partial derivative of A along the budget-balanced tax reform y 7→ T (y)− t R(y) + r(t). Consequently,
we find that ∂BR,BB/∂t = 0, and thus:

1

λ

∂W R,BB

∂t
=

∂L R,BB

∂t

Let ∂Aρ/∂t be the partial derivative of A along the lump-sum perturbation T (y)− t. According to (30),
by Gateaux differentiability of L , we get:

∂L R,BB

∂t
=

∂L R

∂t
+ r′(0)

∂L ρ

∂t
.
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Equation (31) implies:
∂L ρ

∂t
= 0.

Combining these three equations leads to:

1

λ

∂W R,BB

∂t
=

∂L R

∂t
.

Since λ > 0, the budget-balanced reform improves welfare (i.e. ∂W R,BB/∂t > 0) if and only if
∂L R/∂t is positive.

B.3 GE-replicating reforms and proof of Proposition 2

According to Equations (33) and (A.9a), the PE effect of the jth GE-replicating reform on utility is
given by:

∂URj ,PE(w, t)

∂t
= Uc (C(w),X(w);w)

(
1− Tyj (Y(w))

)
Yj(w) =

∂U(w)

∂log pj

The second equality follows from (A.9b). According to (A.8), the PE effect of the jth GE-replicating
reform on the supply of the ith factor is given by:

∂XRj ,PE
i (w, t)

∂t
=

n∑

k=1

∂Xi(w)

∂τk

∂Rj(Y(w))

∂yk
+

∂Xi(w)

∂ρ
Rj(Y(w))

=
(
1− Tyj (Y(w))

) [∂Xi(w)

∂τj
+ Yj(w)

∂Xi(w)

∂ρ

]
− Yj(w)

n∑

k=1

Tykyj (Y(w))
∂Xi(w)

∂τk

=
(
1− Tyj (Y(w))

) ∂Xu
i (w)

∂τj
− Yj(w)

n∑

k=1

Tykyj (Y(w))
∂Xi(w)

∂τk

The second equality uses (33), and the third equality uses (A.7d). According to (A.7f), we therefore get:

∂XRj ,PE
i (w, t)

∂t
=

∂Xi(w)

∂log pj
⇒ ∂Y Rj ,PE

i (w, t)

∂t
=

∂Yi(w)

∂log pj
− 1i=j Yj(w). (A.14)

Finally, applying the chain rule to C(w) = C (U(w),X(w);w) yields:

∂CRj ,PE(w, t)

∂t
=

∂C(w)

∂log pj
.

This ends the proof that the jth GE-replicating reform at the PE replicates the effects of a log-change in
the j-th price on taxpayers’ supplies of production factors, consumption levels and utilities.

We now turn to Proposition 2. For any direction R(·), Let RN (·) be defined as RN (y)
def≡ R(y) −∑n

j=1 γ
R
j Rj(y), with Rj(·) defined in (33). To ensure that reforms in the direction RN has the same

effect on factor supplies and utilities at the GE as do reforms in the direction R at the PE, the γRj ’s must

solve γRj = −∂log pR
N

j /∂t for j = 1, ..., n. This condition arises from the equivalence, for each factor
j, between a reform in the jth GE-replicating direction of magnitude dpj/pj and a log change in the jth

price. Since the matrix Γ of elasticities of factors supplies with respect to price is also the matrix of PE
responses of GE-replicating reforms on aggregate income, we thus get:

∂logYRN ,PE

∂t
=

∂logYR,PE

∂t
− Γ · ∂log pRN

∂t
. (A.15)
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From (25), we thus get:

(In − Ξ · Γ) ∂log pRN

∂t
= Ξ · ∂logYR,PE

∂t
− Ξ · Γ · ∂log pRN

∂t
.

We therefore get:
∂log pRN

∂t
= Ξ · ∂logYR,PE

∂t

which eventually leads to γRj =
∑n

i=1 Ξj,i (∂YR,PE
i /∂t)/Yi.

Finally, to confirm that dXRN
/X = ∂logXR,PE/∂t, we successively notice that:

∂logXRN

∂t
= Γ · ∂log pRN

∂t
+

∂logYRN ,PE

∂t

= Γ · ∂log pRN

∂t
+

∂logYR,PE

∂t
− Γ · ∂log pRN

∂t

=
∂logYR,PE

∂t
=

∂logXR,PE

∂t

where the first equality follows (A.13b), the second is induced by (A.15) and the last equality holds
because ∂logXR,PE/∂t = ∂logYR,PE/∂t at the PE.

B.4 Proof of Proposition 3

Let us use (14) to rewrite (30) as:

∂L R(t)

∂t
=

∫

W

{
(g(w)− 1) R(Y(w)) +

n∑

i=1

(Tyi(Y(w)) + µi)
∂Y R,PE

i (w, t)

∂t

}
dF (w).

Plugging (33) and (A.14) in the latter equation, we can write:

∂L Rj
(t)

∂t
=

∫

W

{
(g(w)− 1)

(
1− Tyj (Y(w))

)
Yj(w)

+

n∑

i=1

(Tyi(Yi(w)) + µi)

[
∂Yi(w)

∂log pj
− 1i=j Yj(w)

]}
dF (w)

=

∫

W

{
[
g(w)

(
1− Tyj (Y(w))

)
− 1− µj

]
Yj(w) +

n∑

i=1

(Tyi(Y(w)) + µi)
∂Yi(w)

∂log pj

}
dF (w).

Using Equations (18) yields:

∂L Rj
(t)

∂t
=

∂L

∂log pj
− (1 + µj)Yj(w) +

n∑

i=1

µi
∂Yi

∂log pj
.

From ∂Yj(w)/∂log pj = ∂Xj/∂log pj + Yj and (24b), we obtain:

∂L

∂log pj
= Yj −

n∑

i=1

µi Yi Γi,j +
∂L Rj

(t)

∂t
,

where, substituting ηi = µi Yi leads, in matrix terms to:

∂L

∂log p
= Y +

∂L R

∂t
− η · Γ. (A.16)
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Substituting (29) into (A.16) leads to:

∂L

∂log p
= Y +

∂L R

∂t
− ∂L

∂log p
· (In − Ξ · Γ)−1 · Ξ · Γ. (A.17)

We notice that:

In + (In − Ξ · Γ)−1 · Ξ · Γ = (In − Ξ · Γ)−1 (In − Ξ · Γ + Ξ · Γ) = (In − Ξ · Γ)−1 .

This equality matrix allows us to simplify Equation (A.17) as follows:

∂L

∂log p
· (In − Ξ · Γ)−1 = Y +

∂L R

∂t
. (A.18)

Multiplying on the right both sides of (A.18) by matrix Ξ and using (29), we eventually arrive at:

η = Y · Ξ +
∂L R

∂t
· Ξ. (A.19)

To compute the term Y · Ξ, we differentiate both sides of (7) with respect to Xi. We obtain: pi +∑n
j=1Xj ∂Pj/∂Xi = FXi . Rearranging terms leads to:

∑n
j=1 Yj ∂logPj/∂Xi = FXi − pi. Multiply-

ing both sides by Xi and using (24a) yields:
n∑

j=1

Yj Ξj,i = (FXi − pi)Xi. (A.20)

Therefore, the ith column of Equation (A.19) writes:

ηi =

n∑

j=1

Yj Ξj,i +

n∑

j=1

∂L Rj

∂t
Ξj,i = (FXi − pi)Xi +

n∑

j=1

∂L Rj

∂t
Ξj,i

where the second equality is obtained using (A.20). Utilizing ηi = µi Yi leads to (38a). Under perfect
competition, Equation (8) simplifies (38a) to (38b). If the tax schedule is optimized in the directions
R1, ...,Rn, yielding ∂L R1

(t)/∂t = ... = ∂L Rn
(t)/∂t = 0, it modifies (38a) to (38c). Moreover, if

one further assumes perfect competition, Equation (8) simplifies (38c) to (38d).

Alternative proof of (38a)

We now propose a more intuitive proof. Equation (34) implies:

∂L RN

∂t
=

∂L R

∂t
−

n∑

j=1

γRj
∂L Rj

∂t
.

Combining with (35) and (36) leads to (37). Comparing with (32) leads to:
n∑

i=1

µi
∂YR,PE

i

∂t
=

∑

1≤i,j≤n

(
Yj +

∂L Rj

∂t

)
Ξj,i

Yi

∂YR,PE
i

∂t
.

The latter equality having to hold for any direction R(·),39 the preceding equality leads to:

∀i = 1, ..., n : µi =
n∑

i=1

(
Yj +

∂L Rj

∂t

)
Ξj,i

Yi
.

Differentiating (7) with respect to the ith factor, we obtain FXi − pi =
∑

j (∂Pj/∂Xi) Xj . Using
(24a) leads to: FXi − pi = (1/Xi)

∑
j Ξji Yj . Dividing both sides by pi yields

∑n
j=1 Yj Ξj,i/Yi =

(FXi − pi) /pi, thereby leading to (38a).

39This requires that the set of vectors
(
∂YR,PE

1 /∂t, ..., ∂YR,PE
n /∂t

)
for all directions R(·) is n−dimensional, an assump-

tion that is not necessary in the previous proof.
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B.5 Proof of Proposition 4

Rewriting Equation (30) in terms of income y rather than type w yields:

∂L R(t)

∂t
=

∫

WY

{
−
[
1− ĝ(y)−

n∑

i=1

(Tyi(y) + µi)
∂Ŷi(y)

∂ρ

]
R(y)

+
∑

1≤i,j≤n

(Tyi(y) + µi)
∂Ŷi(y)

∂τj
Ryj (y))



h(y)dy.

Using the divergence theorem on the term of the second line and rearranging, we obtain:

∂L R(t)

∂t
=

∮

∂WY

∑

1≤i,j≤n

(Tyi(y) + µi)
∂Ŷi(y)

∂τj
h(y)ϕj(y)R(y)dσ(y)

−
∫

WY

{[
1− ĝ(y)−

n∑

i=1

(Tyi(y) + µi)
∂Ŷi(y)

∂ρ

]
h(y)

+
n∑

j=1

∂[
∑n

i=1 (Tyi(y) + µi)h(y)]

∂yj



R(y) dy.

where dσ(y) is the corresponding measure of a surface integral (denoted by
∮

). If the tax system y 7→
T (y) is optimal, the latest equation has to be equal to zero for all possible directions R(·). This is only
possible if both equations given in Proposition 4 are satisfied.

At this optimum, one must have ∂L Rj
/∂t = 0 for all j ∈ {1, ..., n}. This implies that Equation

(38a) reduces to µ1, ..., µn = 0 under perfect competition. Revealed welfare weights g̃(y) solve Equation
(40) with µ1, ..., µn = 0 for ĝ(y) for the current tax schedule, which leads to (42).

B.6 Proof of Proposition 5

From the definition of revealed welfare weights, we get that for any direction R(·): ∂L R(t)/∂t = 0.
Moreover, since µ1 = ... = µn = 0, we have that for any direction R(·): ∂L R(t)/∂t = ∂L R,PE(t)/∂t =
0 from (32). Therefore, using ∂L R,PE(t)/∂t = ∂BR,PE(t)/∂t + (1/λ)∂W R,PE(t)/∂t and Equation
(15), it yields:

∂BR,PE(t)

∂t
= −

∫

WY

ĝ(y) R(y) h(y)dy. (A.21)

Therefore, a tax reform with a small positive magnitude t and a direction R(·) that verifies (43) in-
creases tax revenue at the PE. According to (15), such a reform also increases at the PE the welfare
of taxpayers for which R(Y(w)) > 0 and leave the welfare of the others unchanged. It is therefore a
Pareto-improving tax reform at the PE.

According to Proposition 2, a reform with a small positive t in the direction RN (·) defined in (34)
has the same effects at the GE on taxpayers’ utility U(w) and factor supplies X(w) as a reform in
the direction R(·) and the same magnitude t at the PE. Since tax revenues are equal to:

∑n
j=1 pj Xj −∫

W C (U(w),X(w);w) dF (w), if a tax reform with a small positive magnitude t and a direction R(·) is
Pareto-improving at the PE, which is the case when some revealed welfare are negative and the direction
R(·) verifies (43), a reform with a small positive magnitude t and the direction RN (·) defined by (34)
and (35) is Pareto-improving if

∑
j Xj ∂p

RN
/∂t ≥ 0. From (7) we get:

F
(
XR,PE
1 (t), ...,XR,PE

n (t)
)
=

n∑

j=1

pRj (t) XR,PE
j (t)

Differentiating both sides with respect to t and using (8) leads to:
∑

j Xj ∂pR
N
/∂t = 0. Hence, If a

reform with a small positive magnitude t and a direction R(·) is Pareto-improving at the PE, then, under
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perfect competition, a reform with a small positive magnitude t and the direction RN (·) defined by (34)
and (35) is Pareto-improving at the GE.

B.7 Proof of Proposition 6

We consider the case where revealed welfare weights ĝ(y) > 0 are almost everywhere positive.
We first notice that, according to Proposition 2, under perfect competition, there exists a direction

RN (·) such that reforms with positive t in the direction RN (·) are Pareto-improving at the GE if and
only if there exists a direction R(·) such that reforms with positive t in the direction RN (·) are Pareto-
improving at the PE, where R(·) and R(·) are related by (34) and (35)

Assuming, by contradiction, that there exists a direction of tax reform denoted RN (·) such that a
reform in the direction RN (·) and a small positive magnitude t is Pareto-improving at the GE. According
to Proposition 2, this implies the existence of a direction of tax reform denoted R(·), such that a reform
with this direction and a positive t is Pareto-improving at the PE. According to (15), since a reform in the
direction R(·) improves taxpayer’s welfare at the PE, one must have R(Y(w)) ≥ 0 for all w ∈ W with
a strict inequality for some types. However, according to (A.21), such a reform decreases tax revenues
at the PE, leading to a contradiction for a Pareto-improving direction of tax reforms at the PE.

B.8 Proof of Proposition 7

When the tax system is schedular and linear for i = n′ + 1, ..., n, we get that:

T (y) =

n′∑

i=1

Ti(yi) +

n∑

i=n′+1

ti yi (A.22)

the admissible directions of tax reforms must also be schedular, i.e. they must depend only on one type
of income and take the form y 7→ Ri(yi). Moreover for i = n′ + 1, ..., n the directions specific to the
ith income must be linear.

Under Equation (A.22), according to (33) the GE-replicating directions are given by Rj(y) = (1−
T ′(yj))yj for j = 1, ..., n′ and by Rj(y) = (1 − tj)yj for j = n′ + 1, ..., n. Perturbing the tax
system along the GE-replicating directions thus keeps the tax system being schedular and also linear for
i = n′ + 1, ..., n. Therefore, one has ∂L Rj

/∂t = 0 for all j = 1, ..., n, so, according to Proposition 3,
the GE multipliers are given by (38c).

Let Ri(yi) be any direction of a tax reform specific to the ith income. Because the tax schedule is
schedular, Equation (30), stating the impact on the Lagrangian of a tax reform at the GE, simplifies to:

∂L Ri(t)

∂t
=

∫

W

{
−
[
1− g(w)−

n∑

k=1

(
T ′
k(Yk(w)) + µk

) ∂Yk(w)

∂ρ

]
Ri(Yi(w))

+

n∑

1=k

(
T ′
k(Yk(w)) + µk

) ∂Yk(w)

∂τi
R′

i(Yi(w))

}
dF (w). (A.23)

since ∂Ri(yi)/∂yj = 0 whenever j ̸= i under a schedular direction of tax reform. Rewritten in terms of
the distribution of the ith income leads to:

∂L Ri(t)

∂t
=

∫

R+

{
−
[
1− g(w)|Yi(w)=yi

−
n∑

k=1

(
T ′
k(Yk(w)) + µk

) ∂Yk(w)

∂ρ

∣∣∣∣
Yi(w)=yi

]
Ri(yi)

+
n∑

1=k

(
T ′
k(Yk(w)) + µk

) ∂Yk(w)

∂τi

∣∣∣∣
Yi(w)=yi

R′
i(yi)

}
hi(yi)dyi.
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Integrating by parts the first term and rearranging terms using (44) leads to:

∂L Ri(t)

∂t
=

∫

R+

{
−
∫ ∞

z=yi

[
1− g(w)|Yi(w)=z −

n∑

k=1

(
T ′
k(Yk(w)) + µk

) ∂Yk(w)

∂ρ

∣∣∣∣
Yi(w)=z

]
dHi(z)

+
T ′
i (yi) + µi

1− T ′
i (yi)

εi(yi) yi hi(yi) +
∑

1≤k≤n,k ̸=i

(
T ′
k(Yk(w)) + µk

) ∂Yk(w)

∂τi

∣∣∣∣
Yi(w)=yi

hi(yi)



R′(yi)dyi.

− lim
yi 7→∞

{∫ ∞

z=yi

[
1− g(w)|Yi(w)=z −

n∑

k=1

(
T ′
k(Yk(w)) + µk

) ∂Yk(w)

∂ρ

∣∣∣∣
Yi(w)=z

]
dHi(z) Ri(yi)

}

+ lim
yi 7→0

{∫ ∞

z=yi

[
1− g(w)|Yi(w)=z −

n∑

k=1

(
T ′
k(Yk(w)) + µk

) ∂Yk(w)

∂ρ

∣∣∣∣
Yi(w)=z

]
dHi(z) Ri(yi)

}

For i = 1, ..., n′, the income specific tax schedule Ti(·) being nonlinear, the above equation must be
equal to zero for any non linear direction Ri, which implies (45a).

For i = n′ + 1, ..., n, the ith income specific tax schedule has to be linear, so the only admissible
directions of tax reforms specific to the ith income are proportional to Ri(yi) = yi. Equation (A.23) then
simplifies to:

∂L Ri(t)

∂t
=

∫

W

{
−
[
1− g(w)−

n∑

k=1

(
T ′
k(Yk(w)) + µk

) ∂Yk(w)

∂ρ

]
Yi(w)

+

n∑

1=k

(
T ′
k(Yk(w)) + µk

) ∂Yk(w)

∂τi

}
dF (w).

Using (20), the preceding equation simplifies to:

∂L Ri(t)

∂t
=

∫

W

{
− [1− g(w)]Yi(w) +

n∑

1=k

(
T ′
k(Yk(w)) + µk

) ∂Y u
k (w)

∂τi

}
dF (w).

Using (44), the condition ∂L yi/∂t = 0 leads to (45b).

B.9 Proof of Proposition 8

When the tax schedule is comprehensive, admissible directions of tax reforms take the form y 7→
R(y1 + ...+ yn). Consequently, Equation (30) simplifies to:

∂L R(t)

∂t
=

∫

W

{
−
[
1− g(w)−

n∑

k=1

(
T ′
0(Y0(w)) + µk

) ∂Yi(w)

∂ρ

]
R(Y0(w))

+
∑

1≤j,k≤n

(
T ′
0(Y0(w)) + µk

) ∂Yk(w)

∂τj
R′(Y0(w))



dF (w).

Rewriting this expression in terms of the density h0(·) and CDF H0(·) of the taxable income, the last
equation becomes:

∂L R(t)

∂t
=

∫

R+

{
−
[
1− g(w)|Y0(w)=y0

−
n∑

k=1

(
T ′
0(y0) + µk

) ∂Yk(w)

∂ρ

∣∣∣∣
Y0(w)=y0

]
R(y0)

+
∑

1≤j,k≤n

(
T ′
0(y0) + µk

) ∂Yk(w)

∂τj

∣∣∣∣
Y0(w)=y0

R′(y0)



h0(y0)dy0.
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Using (46)-(48) leads to:

∂L R(t)

∂t
=

∫

R+

{
−
[
1− g(w)|Y0(w)=y0

− T ′
0(y0)

∂Y0(y0)

∂ρ
−

n∑

k=1

µk
∂Yk(w)

∂ρ

∣∣∣∣
Y0(w)=y0

]
R(y0)

+
T ′
0(y0)

1− T ′
0(y0)

ε0(y0) y0 R
′(y0) +

n∑

k=1

µk
∂Yk(w)

∂τ0

∣∣∣∣
Y0(w)=y0

R′(y0)

}
h0(y0)dy0.

Integrating by parts the first line yields:

∂L R(t)

∂t

=

∫

R+

{
−
∫ ∞

z=y0

[
1− g(w)|Y0(w)=z − T ′

0(y0)
∂Y0(y0)

∂ρ
−

n∑

k=1

µk
∂Yk(w)

∂ρ

∣∣∣∣
Y0(w)=z

]
dH0(y0)

+
T ′
0(y0)

1− T ′
0(y0)

ε0(y0) y0 h0(y0) +
n∑

k=1

µk
∂Yk(w)

∂τ0

∣∣∣∣
Y0(w)=y0

h0(y0)

}
R′(y0)dy0

− lim
y 7→∞

∫ ∞

z=y0

[
1− g(w)|Y0(w)=z − T ′

0(y0)
∂Y0(y0)

∂ρ
−

n∑

k=1

µk
∂Yk(w)

∂ρ

∣∣∣∣
Y0(w)=z

]
dH0(y0) R(y0)

+ lim
y 7→0

∫ ∞

z=y0

[
1− g(w)|Y0(w)=z − T ′

0(y0)
∂Y0(y0)

∂ρ
−

n∑

k=1

µk
∂Yk(w)

∂ρ

∣∣∣∣
Y0(w)=z

]
dH0(y0) R(y0)

At the optimal comprehensive tax schedule, one mus have ∂L R/∂t = 0 for all directions, which implies
Equation (49).

If there are only two production factors and if the elasticity of substitution between these two factors
is denoted σ, one gets:

dp1
p1

− dp2
p2

=
1

σ

(
dX2

X2
− dX1

X1

)

Under perfect competition, and denoting αi = Yi/ (Y1 + Y2) the ith income share, the differentiation of
both sides of (7) lead to:

0 = α1
dp1
p1

+ α2
dp2
p2

⇒ dp1
p1

− dp2
p2

=
1

α2

dp1
p1

= − 1

α1

dp2
p2

Combining the two latter equations leads to:

Ξ =

(
−α2

σ
α2
σ

α1
σ −α1

σ

)

Under perfect competition, the GE multipliers are given by Equation (38b), which leads to:

µ1 =
−∂L R1

∂t
α2 +

∂L R2

∂t
α1

σ Y1
and : µ1 =

∂L R1

∂t
α2 −

∂L R2

∂t
α1

σ Y2

Using ∂L R1
/∂t+ ∂L R2

/∂t = 0 eventually yields (50).
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C Appendix related to Section IV

C.1 Proof of Proposition 9

Equation (51c) can be rewritten in matrix form as:

∂L

∂αℓ
dαℓ =

∂L

∂log p
· dp
p

Using (52) leads to:
∂L

∂αℓ
=

∂L

∂log p
· (In −Ξ · Γ)−1 · ∂logP

∂αℓ

. Plugging (A.18) in the latter equation leads to:

∂L

∂αℓ
=

(
Y +

∂L R

∂t

)
· ∂logP

∂αℓ
=

n∑

j=1

Yj
∂logPj

∂αℓ
+

n∑

j=1

∂L Rj

∂t

∂logPj

∂αℓ
. (A.24)

Differentiating both sides of (7) with respect to αℓ implies that:

Fαℓ
=

n∑

j=1

Xj
∂Pj

∂αℓ
=

n∑

j=1

Yj
∂logPj

∂αℓ
. (A.25)

Plugging (A.25) into (A.24) ends the proof of Proposition 9.

C.2 Proof of Proposition 10

Since matrix Γ also provides the effects at the PE of the GE-replicating reforms on factor supplies
and using (55) we get that:

∂logYRN ,PE

∂t
= −Γ ·

L∑

ℓ=1

∂logP

∂αℓ
α′
ℓ(t).

Using (52) yields:

(In −Ξ · Γ)dp
RN

p
=

L∑

ℓ=1

∂logP

∂αℓ
α′
ℓ(t) dt− Ξ · Γ ·

L∑

ℓ=1

∂logP

∂αℓ
α′
ℓ(t) dt

dpRN

p
=

L∑

ℓ=1

∂logP

∂αℓ
α′
ℓ(t) α

′
ℓ(t) dt (A.26)

Using (A.13b) leads to:

dXRN

X = Γ ·
L∑

ℓ=1

∂logP

∂αℓ
α′
ℓ(t) dt− Γ ·

L∑

ℓ=1

∂logP

∂αℓ
dαℓ = 0

Hence, combining the production policies reforms t 7→ α1(t), ..., αL(t) with the tax reform −∑n
j=1 γjRj

has no impact on factor supplies. According to (A.9a), (A.9b) and (A.26), the impacts on taxpayers’ util-
ity are also nil and so are the impact on taxpayer’s consumption. Hence, the impact on government’s
revenue

∑n
j=1 pj Xj −

∫
W C (U(w),X(w);w)dF (w) is given by:

n∑

j=1

Xj dp
RN

j =
n∑

j=1

Yj

dpR
N

j

pj
= Y · dp

RN

p

=

L∑

ℓ=1

n∑

j=1

Yj
∂logPj

∂αℓ
α′
ℓ(t) dt

=
L∑

ℓ=1

Fαℓ
α′
ℓ(t) dt
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which is positive, ending the proof of Proposition 10.

C.3 Appendix related to Section IV.2

In this appendix, we show that the constrained profit maximization of firms (Equation (59)) is equiv-
alent to the constrained maximization of a hypothetical “production coordinator”. This coordinator max-
imizes the total production of the final good minus the consumption of the final good required for the
production of intermediate goods.

The Lagrangian of the production coordinator’s program (61) writes:

S∑

s=0

qs




Ns∑

φ=1

(1− αs)Fφ,s(Xφ,s, zφ,s)−
S∑

s′=0s′ ̸=s

Ns′∑

φ=1

zφ,s
′

s + Zs


+

n∑

i=1

pi


Xi −

S∑

s=0

Ns∑

φ=1

Xφ,s
i




where we denote pi the Lagrange multiplier associated to the ith constraint (61b) and where we denote qs
the Lagrange multiplier associated with the sth constraint (61c). We normalize Z0 = α0 = 0 and q0 = 1.
The first-order conditions with respect to Xφ,s

i and zφ,ss′ coincide with Equations (60). Since plugging
(61d) into (61c) leads to (56) and equation (61b) coincides with (58), the competitive allocation of the
production resources coincides with the solution of the production coordinator’s Program (61).

We now verify that the sum of income factors
∑n

i=1 pi Xi, profits
∑S

s=0

∑Ns
φ=1 π

φ,s and revenues
from intermediate good taxation

∑S
s=1

∑Ns
φ=1 αsqsFφ,s (Xφ,s, zφ,s) is equal to the total production of

the final good
∑N0

φ=1Fφ,0
(Xφ,0, zφ,0

)
net of the consumption of the final good by intermediate good

producers, i.e.
∑S

s=1

∑Ns
φ=1 z

φ,s
0 . According to (59), the sum of income factors, profits and tax liabilities

on intermediate goods from firm φ ∈ {1, ..., Ns} in sector s ∈ {0, ..., S} is equal to:

n∑

i=1

pi Xφ,s
i + πφ,s + αs qs Fφ,s (Xφ,s, zφ,s) = qs Fφ,s (Xφ,s, zφ,s)−

S∑

s′=0
s′ ̸=s

qs′ z
φ,s
s′ .

In other words, the value added of firm φ in sector s in the right-hand side is equal to the sum of factor
incomes, profits and tax revenue from intermediate goods taxation in the left-hand side. Adding the later
equality for all firms in all sectors and using (58), α0 = 0 and q0 = 1 yield:

n∑

i=1

pi Xi +

S∑

s=0

Ns∑

φ=1

πφ,s +

S∑

s=0

Ns∑

φ=1

αs qs Fφ,s (Xφ,s, zφ,s)

=
S∑

s=0

Ns∑

φ=1

qs Fφ,s (Xφ,s, zφ,s)−
∑

0≤s,s′≤S
s′ ̸=s

Ns∑

φ=1

qs′ z
φ,s
s′

=

N0∑

φ=1

Fφ,0
(Xφ,0, zφ,0

)
+

S∑

s=1

Ns∑

φ=1

qs Fφ,s (Xφ,s, zφ,s)−
∑

0≤s,s′≤S
s′ ̸=s

Ns∑

φ=1

qs′ z
φ,s
s′

=

N0∑

φ=1

Fφ,0
(Xφ,0, zφ,0

)
+

S∑

s=1

Ns∑

φ=1

qs Fφ,s (Xφ,s, zφ,s)−
∑

0≤s,s′≤S
s′ ̸=s

Ns′∑

φ=1

qs z
φ,s′
s

where the last equality has been obtained by inverting indexes s and s′ in the last term. Combining the
latter equality with (56) leads to:
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n∑

i=1

pi Xi +

S∑

s=0

Ns∑

φ=1

πφ,s +

S∑

s=0

Ns∑

φ=1

αs qs Fφ,s (Xφ,s, zφ,s)

=

N0∑

φ=1

Fφ,0
(Xφ,0, zφ,0

)
+

∑

0≤s,s′≤S
s′ ̸=s,s ̸=0

Ns′∑

φ=1

qs z
φ,s′
s −

∑

0≤s,s′≤S
s′ ̸=s

Ns′∑

φ=1

qs z
φ,s′
s .

Simplifying eventually leads to:

n∑

i=1

pi Xi +

S∑

s=0

Ns∑

φ=1

πφ,s +

S∑

s=1

Ns∑

φ=1

αs qs Fφ,s (Xφ,s, zφ,s) =

N0∑

φ=1

Fφ,0
(Xφ,0, zφ,0

)
−

S∑

s′=1

Ns′∑

φ=1

zφ,s
′

0 ,

i.e. the sum of income factors
∑n

i=1 pi Xi, profits
∑S

s=0

∑Ns
φ=1 π

φ,s and tax revenue from intermedi-
ate good taxation

∑S
s=1

∑Ns
φ=1 αsqsFφ,s (Xφ,s, zφ,s) is equal to the total production of the final good∑N0

φ=1Fφ,0
(Xφ,0, zφ,0

)
net of the consumption of the final good by intermediate goods producers, i.e.

∑S
s′=1

∑Ns′
φ=1 z

φ,s
0 .
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