Building a modular and multi-cellular virtual twin of the synovial joint in Rheumatoid Arthritis
Résumé
Rheumatoid arthritis is a complex disease marked by joint pain, stiffness, swelling, and chronic synovitis, arising from the dysregulated interaction between synoviocytes and immune cells. Its unclear etiology makes finding a cure challenging. The concept of digital twins, used in engineering, can be applied to healthcare to improve diagnosis and treatment for complex diseases like rheumatoid arthritis. In this work, we pave the path towards a digital twin of the arthritic joint by building a large, modular biochemical reaction map of intra- and intercellular interactions. This network, featuring over 1000 biomolecules, is then converted to one of the largest executable Boolean models for biological systems to date. Validated through existing knowledge and gene expression data, our model is used to explore current treatments and identify new therapeutic targets for rheumatoid arthritis.
Origine | Publication financée par une institution |
---|---|
licence |